INGCHIRS

INGCHIPS SDK User Guide

Ingchips Technology Co., Ltd.
Web: http://www.ingchips.com
http://www.ingchips.cn
E-mail: service@ingchips.com
Tel: 010-85160285
Address: Room 803, Building #3, Zijin Digital Park, Haidian District, Beijing
Room 1009, Shuguang Building, Science Park, Nanshan District, Shenzhen

Copyright (c) INGCHIPS Technology Co., Ltd. All rights reserved.

Without prejudice to any other rights INGCHIPS Technology Co., Ltd. may have, no part
of the material may be reproduced, distributed, transmitted, displayed, published or broadcast in
anywhere else by any process, electronic or otherwise, in any form, tangible or intangible, without
the prior written permission of INGCHIPS Technology Co., Ltd.

Contents

Welcome xiii
1 Introduction 1
1.1 Scope. . . . o o e 2
1.2 Architecture e e e e 2
1.21 RTOSBundles e 2

1.2.2 “NoOS”Bundles e 4

1.3 Abbreviations & Terminology 4
1.4 References L e 5

2 Tutorials 1
2.1 HelloWorld e 1
2.1.1 Development ToolPage 1

2.1.2 Choose Chip SeriesPage 2

2.1.3 Choose Project TypePage 2

2.1.4 Role of Your DevicePage 4

2.1.5 Peripheral SetupPage 4

2.1.6 Security & PrivacyPage o oo 5

2.1.7 Firmare Over-The-AirPage 6

2.1.8 Common FunctionsPage, 6

2.1.9 Buildyourproject e 7

2.1.10 Download 7

2.2 iBeacon ... e e 8
2.2.1 Setup AdvertisingData L oL Lo 8

222 TOVIE . o o o o 9

2.3 Thermometer e e e e e e e e e e 11

iii

P NGCHIPS

CONTENTS

2.3.1 Setup AdvertisingData L L Lo 11

2.3.2 Setup GATT Profile 12

233 WritetheCode 13

2.3.4 Notification L 15

2.4 Thermometer with FOTA 15
24.1 DevicewithFOTA 15

242 MakeaNew Version oo 17

243 FOTA Server o i i ittt e e 19

244 Trylt. . ..o 19

2.5 iBeaconScanner Lo e 19
2.5.1 Distance Estimation o 00000000 21

2.5.2 Concurrent Advertising & Scanning 23

2.6 Notification & Indication L L Lo 23
2.6.1 Inter-task Communication 23

262 Timer 24

2.7 Throughput e e e e e e e e e 26
2.7.1 Theoretical Peak Throughput 27

2.7.2 TestThroughput 27

2.8 DualRole & BLE Gateway v v v v v v i e e e e e e e e e 29
2.8.1 Use Wwizard to create a peripheralapp 29

2.8.2 Define ThermometerData 30

2.8.3 Scan for Thermometers 31

2.8.4 Discover ServiCes it e e e e e e e e 31

285 DataHandling, 31

2.8.6 Robustmess 31

2.8.7 Prepare Thermometers v 31

2.8.8 Test e 32

29 Startfrom Examples e 32
3 Core Tools 35
3.1 Wizard 35
3.2 Downloader 36
3.2.1 Introduction 36

iv

P NGCHIPS

CONTENTS

3.2.2 Scripting & Mass Production Lo oL 38

3.2.3 FlashRead Protection 39

3.24 PythonVersion e e e e 40

3.3 Tracer e e e e 40
34 AxfTool e 42
3.5 AIShortcuts e e e e e e 42
3.5.1 Imstallation 42

3.5.2 Usage e 43

Dive Into SDK 45
4.1 Memory Management ittt e e e 45
4.1.1 Global Variables Lo 45

4.1.2 UsingStack e e e e 45

41.3 UsingHeap e e e e e 46

4.2 Multitasking L L 47
4.3 Interrupt Management e e e e e e e e 47
4.4 Power Management i ittt e e e e e e e e 47
45 CMSIS APL . . . e e 48
4.6 Debugging & Tracing o e e e e 48
46.1 Tipson SEGGERRTT 49

4.6.2 MemoryDump e 50
Platform API Reference 51
5.1 Configuration & Information Lo, 51
5.1.1 platform_config o v i i i e e e e e e e e e e 51

5.1.2 platform_get_version o v v v v v i i e e e e e e 54

5.1.3 platform_read_info. . . . o v v v v e e 55

5.1.4 platform_switch_app o i i i e e e e e 56

5.2 Events & Interrupts oL L. e e e e e e e e 56
5.2.1 platform_set_evt_callback_table. 56

5.2.2 platform_set_irg_callback_table. 58

5.2.3 platform_set_evt_callback 59

5.2.4 platform_set_irg_callback v v v v v i v v 63

5.2.5 platform_enable_irqg v v i i i e e e e e e e 64

P NGCHIPS

CONTENTS
53 Clocks e 65
5.3.1 platform_calibrate_rt_clk 65
5.3.2 platform_rt_rc_auto_tune i 66
5.3.3 platform_rt_rc_auto_tune2 e 67
5.3.4 platform_rt_rc_tune v v i i e e e e e e e e 67
54 RFE . e e e e e e e e e e e e e e e 68
5.4.1 platform_set_rf_clk_source v v v v v v v v v v v 68
5.4.2 platform_set_rf_init_data v v v v .. 68
5.4.3 platform_set_rf_power_mapping v v v v v v v v v e 68
544 platform_patch_rf_dinit_data 69
5.5 Memory & RTOS e e e e e e e e 70
5.5.1 platform_call_on_stack v o v v v v v v v ... 70
5.5.2 platform_get_current_task 70
5.5.3 platform_get_gen_os_driver v v v i i i e e 71
5.5.4 platform_get_heap_status i i 72
5.5.5 platform_get_rtos_heap_mem. 73
5.5.6 platform_get_task_handle i i v i i it 74
5.5.7 platform_install_task_stack 74
5.5.8 platform_install_dsr_stack o v v v v v v v 75
56 Time & Timers o i e e e e 76
5.6.1 platform_cancel_us_timer i v i i 77
5.6.2 platform_create_us_timer i i 77
5.6.3 platform_delete_timer e e e 79
5.6.4 platform_get_timer_counter 79
5.6.5 platform_get_us_time i e e e 80
5.6.6 platform_set_abs_timer e 81
5.6.7 platform_set_timer. e e 82
5.7 PowerSaving L e e e e e e e e e e e e e e 83
5.7.1 platform_pre_suppress_cycles_and_sleep_processing 84
5.7.2 platform_pre_sleep_processing v v v v v v v v v v v 84
5.7.3 platform_post_sleep_processing« v v v v v v v v v v v v v o 85
5.7.4 platform_os_idle_resumed_hook 85
5.7.5 platform_pre_suppress_ticks_and_sleep_processing 86

vi

P NGCHIPS

CONTENTS

5.8 Utilities oL e e 86
5.8.1 platform_hrng o e e e e e e e e 86
5.8.2 platform_rand e e e e 87
5.8.3 platform_read_persistent_reg v v v i v i i 87
5.8.4 platform_reset i i i e e e e e e e 88
5.8.5 platform_shutdown i i i i e e e e e 89
5.8.6 platform_write_persistent_reg v v v v v v v v .. 90

5.9 Debugging & Tracing e e e e e e e e 91
5.9.1 platform_printf e e e e 91
5.9.2 platform_raise_assertion e 92
5.9.3 platform_trace_raw. v v i i i e e e e e e e e e 93

5.10 Others e 93
5.10.1 platform_get_link_layer_interf 93
5.10.2 sysSetPublicDeviceAddr v v v i i i e 94

6 Revision History 97

vii

CONTENTS

viii

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

SDK Overview e e e e e e 1
Architecture L. e 3
Choose Project Type 0 o i e e e e e e 1
Choose Chip Series o i i i e e e e e 2
Choose Project Type o i i e 3
Role of Your Device 3
Peripheral Setup 4
Edit Advertising Data 5
Firmare Over-The-Air o i 5
Firmare Over-The-Air o i 6
Common Functions o oo oo 6
”Hello, “isReady e 7
DownloadtoFlash L L 7
Hello, o e e, 8
Edit iBeacon AdvertisingData 0o 9
Edit iBeacon Manufacturer SpecificData 10
iBeacon Ready for GNU Arm Toolchain 10
iBeaconin Locateapp e 10
iBeacon Detailed Information in Locateapp 11
Thermometer Advertising Data 12
Edit Temperature Measurement e 13
Refresh Temperature Measurement o v v v v v v v .. 15
Configure FOTA Version i i ittt e et e e e 17
Update Available for ”Clickety Click” 20
“iscanner” Created for IAR Embedded Workbench 20

ix

B NGCHIPS

LIST OF FIGURES
2.24 iBeacon ScanResult L 23
2.25 Examples for Throughput Testing 27
2.26 Througput on an Android Phoneo oL 28
2.27 Commandinterface 29
2.28 Througput BetweenBoards 29
2.29 Smart Meter Overview Lo e e e e e 30
2.30 Smart Meter GATT Profile, 30
231 CopyanSDK Example i ittt e 33
3.1 Configurate UART e e e e e 37
3.2 Downloader Options o i e e e e e 38
33 TracerMain Ul o e 41
3.4 MSC Generated by Tracer e 41

List of Tables

1.1
1.2

2.1
2.2

4.1
4.2

5.1
5.2

Abbreviations Lo Lo 4
Terminology e e e e e e 5
iBeacon Manufacturer SpecificData 9
FOTA Package Summary i i ittt 18
Comparison of printfand Trace 48
Comparison of UART and SEGGERRTT 49
Two Types of Platform Timers 76
Persistent Register Bit Size o o000 90

Xi

LIST OF TABLES

xii

Welcome

Welcome to use INGCHIPS 918xx/9186xx Software Development Kit.

INGCHIPS 918xxx/9186xx are BLE 5.x full feature SoC solutions. This manual will give you
an in-depth view on BLE development with 918xx/9186xx from software perspective.

xiii

xiv

Chapter 1

Introduction

INGCHIPS Software
Development Kit

Figure 1.1: SDK Overview

INGCHIPS software development kit has following major components (see Figure 1.1):

1. Core Tools

Provide project wizard, flash loader and other functionalities. These tools make BLE devel-
opment easy and seamless.

2. Language & IDE Integration

1.1. SCOPE ’lNEEHIPE

Support Keil uVisionl, IAR Embedded Workbenchz, Rowley Crossworks for ARM3, and

SEGGER Embedded Studio for ARM*. All IDE/Toolchain settings are configured by core
tools properly and automatically. GNU Arm Embedded Toolchain® is also supported.

3. Platform Bundles

Provide different bundles for different application scenarios (such as typical, and
extension). Each bundle contains full stack & (optional) FreeRTOS binary, and ¢ header
files. Source codes for accessing peripherals are also provided.

4. Examples

Provide a rich set of BLE device examples and corresponding Android and iOS referencing
applications.

5. Documentation

User guide (this document), API reference, and application notes are also provided.

1.1 Scope

This document covers platform overall architecture, core tools and platform APIs.

1.2 Architecture

There are two variants of bundles, one with built-in FreeRTOS (RTOS Bundles), and one without
built-in RTOS (“NoOS” Bundles).

1.2.1 RTOS Bundles

ING918xx/ING9186xx software architecture is shown in Figure 1.2. Bootloader is stored in ROM
and can’t be modified, while platform and app executable are stored in flash. Platform executable
is provided for each bundle. BLE stack, FreeRTOS and some SoC functionality are compiled into
this single platform executable. When system starts up, platform executable initializes, then loads
the primary app executable.

A secondary app can only be asked to execute programmaticly. It is possible to download
several secondary apps, and to switch between them programmaticly. After reset, platform will
load the primary app executable as usual. Entry address of the primary app is managed by SDK
tools, while entry addresses of secondary apps can be configured manually.

thttps://www.keil.com/

Zhttps://www.iar.com/iar-embedded-workbench/
3https://www.crossworks.com/index.htm/
*https://www.segger.com/products/development-tools/embedded-studio/
Shttps://developer.arm.com/open-source/gnu-toolchain/gnu-rm

2

https://www.keil.com/
https://www.iar.com/iar-embedded-workbench/
https://www.crossworks.com/index.htm/
https://www.segger.com/products/development-tools/embedded-studio/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

’INEEHIPE 1.2. ARCHITECTURE

/ Switch App

\
Secondary
call APIs E Call APIs
Platform
> €
FreeRTOS
i
\
Bootloader
g
2
|

Figure 1.2: Architecture

1.2.1.1 Apps built with c
App executable’s main function is named app_main, where app gets initialized:

int app_main(void)

{

return 0;

Generally, app_main returns 0. If developer want to replace the built-in RTOS by a customized
one, an implementation of the generic RTOS interface can also be passed to platform binaries
through the returning value of app_main as using “NoOS” Bundles. °

Platform, BLE stack and FreeRTOS APIs are all declared in corresponding ¢ header files. To
use these APIs, just include the necessary header files.

1.2.1.2 Other Languages

Languages can also be used to build apps, for example:

6Starting from SDK v8.5.0. For elder version, app_main shall always return o.

3

1.3. ABBREVIATIONS & TERMINOLOGY ’ INGCHIPS

« Rust’
e Nim®

. Zig®

1.2.2 “NoOS” Bundles

When developers want to use other RTOS, or use features that are missing in those RTOS bundles,
developers can choose the “NoOS” bundles.

A generic RTOS interface is defined, and developers should provide an implementation of this
interface to platform binaries through the returning value of app_main:

uintptr_t app_main(void)
{

return (uintptr_t)os_impl_get_driver()s

1.3 Abbreviations & Terminology

Table 1.1: Abbreviations

Abbreviation Notes

ATT Attribute Protocol

BLE Bluetooth Low Energy
FOTA Firmware Over-The-Air
IRQ Interrupt Request

GAP Generic Access Profile

GATT Generic Attribute Profile
RAM Random Access Memory
ROM Read Only Memory

SDK Software Development Kit

"https://ingchips.github.io/blog/2022-09-24-use-rust/
8SDK example: Smart Home Hub.
9SDK example: Central FOTA.

https://ingchips.github.io/blog/2022-09-24-use-rust/

’ INGLHIFS 1.4. REFERENCES

Table 1.2: Terminology

Terminology Notes

Flash Memory An electronic non-volatile computer storage medium
FreeRTOS A real-time operating system kernel

1.4 References

—

. Host API Reference

. Bluetooth SIG'®

N

. FreeRTOSM

w

. Mastering the FreeRTOS™ Real Time Kernel!?

N

Ohttps://www.bluetooth.com/
Uhttps://freertos.org
12https://Www.freertos.org/Documentation/ 161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-

On_Tutorial_Guide.pdf

https://www.bluetooth.com/
https://freertos.org
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

1.4. REFERENCES

Chapter 2

Tutorials

Following step-by-step tutorials show the basic usage of core tools and concepts of the SDK.

2.1 Hello World

»

In this tutorial, we are going to create a device which is advertising its name, “Hello,

Start Wizard from start menu and select menu item Project -> New Project This brings
up the project wizard. This first page shown by the wizard is Development Tool (see Figure 2.1).

2.1.1 Development Tool Page

/" Create a new project - O X

Development Tool

IDE/Toolchain Features ~ | .gitignore How to use SDK files?
D Keil pVision all LINK to SDK
eIAR Embedded Workbench all COPY to my project
I Rowley CrossWaorks all Uses binaries, source

] VS Code codes provided in SDK
& » SEGGER Embedded Studio all installation.
Gﬁ Gnu Arm Toolchain build A Your project is kept up to

w) date with SDK.

Project Mame: |he||0 |

Directory: |C=\temp| | =

X Cancel 4 Back MNext = o Create

Figure 2.1: Choose Project Type

2.1. HELLO WORLD ’|NEEH|P5

On this page (Figure 2.1):

1. Choose IDE/Toolchain
2. Choose a project name
3. Choose where to store your project

wizard provides below handy functionality:

* If Git is used for software configuration management, select Setup .gitignore;

 If visual Studio Code is the preferred code editor, select Setup Visual Studio Code.

Then press Next to proceed to the next page, Choose Chip Series.

2.1.2 cChoose Chip Series Page

" Create a new project — O *

Choose Chip Series

Series Flash/RAM (KB) 2M Long Range Ext Adv AcAf/AcD Mesh Ext. De
ING9188x0¢
ING9187xx 5127128
ING9186xx 256/64
ING9185xx 25664
ING9168xx 2048/64

< >

| 4 Back | | Next = | + Create

Figure 2.2: Choose Chip Series

On this page (Figure 2.2), choose the target chip series of the project. Then press Next to
proceed to the next page, Choose Project Type.

2.1.3 choose Project Type Page

On this page (Figure 2.3), select Typical.

Then press Next to proceed to the next page, Role of Your Device.

2

4P \GCHIPS

2.1. HELLO WORLD

/" Create a new project - O X
Choose Project Type
Typical Extension Massive Connections
For all typical BLE applications. Typical + INGCHIPS Support up to 26 simultaneous
proprietary extensions (raw connections.
packets, tight connection
intervals, etc)
RTOS Options:
Built-in FreeRTOS w
X Cancel 4= Back Mext = o Create
Figure 2.3: Choose Project Type
/" Create a new project - O X
Role of Your Device
Secondary App |
Blank Project Load Address:
0x80000
Peripheral
Address should be at the boundary
of Flash pages.
Central

X Cancel

4= Back MNext = o Create

Figure 2.4: Role of Your Device

2.1. HELLO WORLD ’ INGCHIRS

2.1.4 Role of Your Device Page

On this page (Figure 2.4), just select Peripheral, and press Next to proceed to the next page,
Peripheral Setup.

2.1.5 Peripheral Setup Page

" Create a new praject — O *

Data Setup

How to Create Adv Data? ..
Setup Advertising Data ...

Use Wizard

. Setup Scan Response Data ...
By Code (Nim only)

Advertising Type
@ Legacy

(O BLE 5.x Extended Advertising

How to Create ATT Database?
‘ Use Wizard ‘ Setup

By Code

X Cancel 4 Back + Create

Figure 2.5: Peripheral Setup

On this page (Figure 2.5), select Legacy advertising.

even if BLE 5.0 is declared as “supported”, so we use legacy advertising for better compat-
ibility. Furthermore, legacy advertising can be changed to BLE 5.x extended advertising by
toggling a single bit later.

@ Phones that support BLE 5.x extended advertising are still rare at present (r Sys.Date())

Click Setup Advertising Data button, which will bring up the advertising data editor (Figure
2.6). In the editor, type name to quickly search for the GAP advertising item 69 - «Complete Local
Name», and click Add to add it into our device’s advertising data.

Click the newly added 09 - «Complete Local Name» item, then fill in “Hello, ” in the
data editor shown below and press Enter. Data Preview will be updated and the whole advertising
data is shown in raw bytes with a few comments on each item. Obviously, Chinese characters are
encoded in UTF-8 properly.

Now, click oK to go back to project wizard, and press Next to proceed to the next page Security
& Privacy.

4P NGCCHIPS

2.1. HELLO WORLD

x ‘ = =] 2 ¥ @

Delete All Save Save As.. OpenfFile.. Import..

09 - «Complete Local Name=

4 -

name

08 - «Shortened Local Names
Add 09 - xComplete Local Name=
-
Remove
Edit tem: []Edit Raw Data Data Preview:
[Hello, 5] // ©x89 - «Complete Local Names
. 14, @x89,

Press Enter/Return to apply.

Reference:

e el

@x48, BxB5S, @x6C, @x6C, Bx6F, Ex2C, Ox20, OxE4,
BxES3, 8x96, BXE7, @x95, 8x&C,

// Total size = 15 bytes

+ OK

Figure 2.6: Edit Advertising Data

2.1.6 Security & Privacy Page

/ Create a new project

- O X
Security & Privacy
Enable Security @
10 Capabilitiy: [NOZINPUT_NO_OUTPUT | Private Address: |OFF n
Persistent Data
Stored In: .
oree eFlash Location:
Mote: ER/IR keys, identity address, etc, are defined here (see sm_persistent 1)
Non-volatile K-V Storage
[Save to eFlash at address: |0x42000
MNote: paring data, configurations, etc, are saved here.
| 4= Back | | Next = | o Create

Figure 2.7: Firmare Over-The-Air

Leave all options as default (Figure 2.7), and press Next to proceed to the next page Firmare

Over-The-A-ir.

2.1. HELLO WORLD "NEEHlF'E

/" Create a new project - O >

Firmware Over-The-Air (FOTA)

CJFirmware Over-The-Air (FOTA)

Project Version: Major: | 0| Minor: | 0| Patch: | 0|

Characteristic Handles:

HAMDLE_FOTA_VERSION=
HAMDLE_FOTA_CONTROL=
HAMDLE_FOTA_DATA=

¥ Cancel 4= Back «” Create

Figure 2.8: Firmare Over-The-Air

2.1.7 Firmare Over-The-Air Page

Leave all options as default (Figure 2.8), and press Next to proceed to the last page Common
Functions.

2.1.8 common Functions Page

/" Create a new project - O X

Common Functions

Printf UART 0 ~ Trace SEGGER RTT ~

ltems to be traced can be configured
B | Enable HCI Logging later in code.

B | Power Saving
Use Deep Sleep
Watchdog
Heap Setup

Standard malloc/free w Size:l:'

FreeRTOS/LL heap APl and malloc/free can be used.
There are three separated heaps.

X Cancel 4= Back Next = " Create

Figure 2.9: Common Functions

’INEEHIPE 2.1. HELLO WORLD

On this page (Figure 2.9), we also accept the default settings and press Create. Now your
project is created (Figure 2.10), and ready for building and downloading.

hello
| DE Cihtemplhellol,

Figure 2.10: ”Hello, ” is Ready

2.1.9 Build your project

Back to the main window of wizard (Figure 2.10), click on your project to open it. Build your
project in IDE.

2.1.10 Download

To download your project, back to wizard (Figure 2.10), right click on your project, and select
Download to Flash from the popup menu to start the downloader (Figure 2.11).

File Help
CLETET ¥ Start @ Force {..} script Setup UART...
Map
(Load View) & Restart X Abort Options...
---. Bx@0es 4600
Lo Burn Bin #1 &
EleName |..,-"..,-"projer:ts,-"svn,-"SDK_Release,-"bundles,-"typical,-"platfu|

Load Address 0x4000| OK. file size = 153692 B

Burn Bin #2
FleName |hel|o.bin |

Load Address 0x2A000| OK. file size = 892 B

|---i Bxeees 4608

Bx0000 4000
—1 | Reserved <
2000

Figure 2.11: Download to Flash

All settings in the downloader are ready except the UART port number. In the downloader,
configure the correct UART port and then click Start.

Once downloaded, check if you can find a device named “Hello, ” by LightBlue, INGdemo
(Figure 2.12) or other apps. Note that, this device may not be listed in the Bluetooth menu of system
settings at present.

2.2. IBEACON ’lNEEHIF‘E

£%10:29

= INGChips OTA Demo

1C:1D:B4:A5:79:B5
78 ?

7C:4F:5D:3C:2C:96
93 ?

Hello, tH &
FF:01:01:02:02:02

Figure 2.12: Hello,

2.2 iBeacon

In this tutorial, let’s make an iBeacon. iBeacon is a protocol developed by Apple! and introduced at
the Apple Worldwide Developers Conference in 2013. Beacons are a class of Bluetooth low energy
(BLE) devices that broadcast their identifier to nearby portable electronic devices. This technology
enables smartphones, tablets and other devices to perform actions when in close proximity to an
iBeacon device.

Firstly, get a iBeacon scanning app from App Store. We will use an app called Locate in this
tutorial. Locate has a list of preconfigured proximity UUIDs, which includes an all 0Os Null UUID.
We will use this Null UUID?.

2.2.1 Setup Advertising Data

There are two items in iBeacon advertising packet.

1. Flags
Value is fixed to 0x06, i.e. two bits are set, LE General Discoverable Mode & BR/EDR Not
Supported.

2. Manufacturer Specific Data

The contents of this item is shown in Table 2.1

!https://developer.apple.com/ibeacon/
2Note that UUID is not allowed to be all Os in final products.

8

https://developer.apple.com/ibeacon/

P NGCHIPS

2.2

. IBEACON

Table 2.1: iBeacon Manufacturer Specific Data

Size in Bytes Name Value Notes
2 Company ID 0x004C Company ID of Apple, Inc
2 Beacon Type 0x1502 Value defined by Apple
16 Proximity UUID User defined value
2 Major Group ID
2 Minor ID within a group
1 Measured Power indBm Measured by an iPhone 5s at a 1 meter distance

In order to make an iBeacon device, we can just follow the same steps as in the Hello World
example, with only on exception that we need to configure the advertising package according to the

specification.

In the advertising data editor, add 6x01 - «Flags» and 6xFF - «Manufacturer Specific

Data». Click ox01 - «Flags»,
Supported.
pops up and select iBeacon

(Figure 2.14).

/* Advertising Data Editor

X
Delete All

H »

Save Save As ..

01 - «Flagss
FF - «Manufacturer Specific Datas

Edit ltem: []Edit Raw Data

OpenFile... Import ..

2]

Help

- «Channel Map Update Indications A
Add 29 - «PB-ADV=

2A - sMesh Messagen

2B - «Mesh Beacon»

3D - «3D Information Data=

FF - «Manufacturer Specific Data= v

-

Remove

Data Preview:

Company ID:

a| |7 exe1 -
2, exel,

«Flags»

8x86,

Data:

7/ BXFE -
1, BxFF,

«Manufacturer Specific Data»

/f Total size = 5 bytes

Edit ag.
iBeacon ...

Reference: Microsoft Swift Pair ...

A deaeno string .

+ Apply

v

Supplement, Part A, section 1.4

Bluetooth Core Specification:Vol. 3, Part C, section 8.1.4 (v2.1 + EDR, 3.0 +
HS and 4.0)Vol. 3, Part C, sections 11.1.4 and 18.11 (v4.0)Core Specification

+ OK X Cancel

Figure 2.13: Edit iBeacon Advertising Data

check LE General Discoverable Mode and BR/EDR Not
Click 0xFF - «Manufacturer Specific Data», then the Edit as button, a menu
.. (Figure 2.13) to open iBeacon manufacturer specific data editor

Signal power can be set to any reasonable value (such as -50dBm), and we will calibrate it

later with the help of the Locate app.

2.2.2 Trylt

Let’s select GNU Arm Embedded Toolchain as our development environment on Choose Project
Type page, and the wizard will make everything ready (Figure 2.15).

9

2.2.

B NGCHIPS

IBEACON
iBeacon Editor X
Proximity UUID:
|{DDU‘DDDDD-DDDD-DDDD-DDDD-DDDDDDDDDDDD} Generate
Major (i.e. group 1D} Minar (i.e. index in group)
| o | 0

Signal Power (dBm)
| 50|

" DK X Cancel

Figure 2.14: Edit iBeacon Manufacturer Specific Data

4 lbeacon
GoC

Chtemplibeacon\ibeacon.ingw

Figure 2.15: iBeacon Ready for GNU Arm Toolchain

Click on the project to open a console, type make® to build it. Back to Wizard, follow the same

steps to download it. Now we are able to find our newly created iBeacon in Locate. (Figure 2.16)

Scan 'I:l'

Null iBeacon (iBeacon)
Major: 0 Minor: O Distance: 0.9

To configure other UUIDs, clicke the "Gear" i...

Figure 2.16: iBeacon in Locate app

Tap on our device then we can calibrate signal power or check distance in real-time as shown

in Figure 2.17.

Once signal power is calibrated, we can right click on our project in Wizard, and select Ed-it

Data -> Advertising menu item to edit its advertising data with same editor that we are getting
familiar with. After advertising data is updated, rebuild the project and check if the distance is
more accurate.

&

According to the specification, proximity beacons must use a non connectable undirected
advertising PDU, using a fixed 100ms advertising interval. In this tutorial, we are not going
to touch the code, so advertising parameters are not touched, either. To make these parameters
fully meet the specification, please refer to the corresponding host GAP APIs.

3Makefile follows the syntax of GNU make.

10

’INEEHIPE 2.3. THERMOMETER

(Scan

iBeacon
00000000-0000-0000-0000-000000000000
Maijor: 0 Minor: 0
RSSI: -48 Accuracy: 0.72 Proximity: near

Calibrate

Figure 2.17: iBeacon Detailed Information in Locate app

2.3 Thermometer

In this tutorial, we are going to make a serious BLE device, a thermometer. Bluetooth SIG has
already defined a GATT service called Health Thermometer®. This SDK contains a reference app
called INGdemo, which can be deployed to an Android or 10S device. Using INGdemo, we can check
Bluetooth devices’ advertising data, and if health thermometer service is found in a device, INGdemo
can connect to it and read temperature.

In this tutorial, you will learn how to:

* Broadcast supported services
+ Configure a GATT profile
* Respond to the read request of a GATT characteristic

2.3.1 Setup Advertising Data
Again, we follow the same steps as in the Hello World example, and on the Peripheral Setup

page, we declare the thermometer service and create a GATT profile. Add following three items
into the advertising data:

1. Flags

“https://www .bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.health_
thermometer.xml

11

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.health_thermometer.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.health_thermometer.xml

2.3. THERMOMETER ’ INGCHIPS

Value is fixed to 0x06, i.e. two bits are set, LE General Discoverable Mode & BR/EDR Not
Supported.

2. Complete List of 16-bit Service Class UUIDs

Add one service 0x1809 - Health Thermometer as shown in Figure 2.18.

3. Complete Local Name

Let’s name our device as “AccurateOne”.

x Z] A » @
Delete All Save Save As .. OpenFile.. Import .. Help
01 - «Flags= (Filter))
03 - «Complete List of 16-bit Service Class UUIDs» ‘
- oFlagse -
09 - «Complete Local Name» - 01 - «Flags ‘ o
Add 02 - «lncomplete List of 16-bit Service Class UUIDs»

03 - «Complete List of 16-bit Service Class UUIDs»

04 - «Incomplete List of 32-bit Service Class UUIDs»
-

3 05 - «Complete List of 32-bit Service Class UUIDs»
Remave 06 - slncomplete List of 128-bit Service Class UUIDs» &
Edit tem: []Edit Raw Data Data Preview:
// Bx81 - «Flags»
] 2, exel,
[] 0x1808 - Glucose Al |exes,
mwog'HeathThe'm’"E‘H /f Bx83 - wComplete List of 16-bit Service Class
] 0x180A - Device Information UUTDS»
[0x180D - Heart Rate 3, 0x03,
[] 0x180E - Phone Alert Status Service 9108, Bx18,
[] 0x180F - Battery Service /f 8x89 - «Complete Local Namen
[] 0x1810 - Blood Pressure v| |12, exes,
@xd1, Bx63, Bx63, Ox75, @72, Bx61, @x74, BG5S,
@x4F, Ox6E, 8x65,
Reference: // Total size = 2@ bytes
Bluetooth Core Specification:Vol. 3, Part C, section 8.1.1 (v2.1 + EDR, 3.0 + HS
and 4.0)Vol. 3, Part C, sections 11.1.1 and 18.2 (v.0)Core Specification
Supplement, Part A, section 1.1

« OK ¥ Cancel

Figure 2.18: Thermometer Advertising Data

2.3.2 Setup GATT Profile

Back to the Peripheral Setup page and click Setup ATT database ... toopenthe GATT profile
editor. Add two service, General Access (0x1800) and Health Thermometer (0x1809). Delete all
non-mandatory characteristics of General Access service. For Health Thermometer service, keep
two characteristics, i.e. temperature measurement and temperature type, and delete the other two.

Next, edit each characteristic’s value:

1. Device Name of General Access:
Right click on the characteristic, select Edit String Value ... menu, and set the value to
“AccurateOne”.

2. Appearance of General Access:

Right click on the characteristic, select Help and the editor will open the corresponding docu-
ment on Bluetooth SIG website. Find the value for general thermometer (0x0300), then click
the Edit button and input 6x00, ©x63 into the data field.

12

’INEEHIPE 2.3. THERMOMETER

3. Temperature Measurement of Health Thermometer

Check the document on Bluetooth SIG website. click the Edit button and input five Os (o, o,
0, 0, 0)into the data field. Here the first byte contains the flags showing that the following
measurement is a FLOAT value in units of Celsius. Check read and dynamic properties (Figure
2.19).

FLOAT type is IEEE-11073 32-bit float. Basically, it has a 24-bit mantissa, and an 8-bit expo-
nent (the most significant byte) in base 10.

4. Temperature Type of Health Thermometer

Check the document on Bluetooth SIG website. Set it to any valid value by click the Edit
button.

Edit Characteristic n
Properties

[]broadcast [+] read

[writeWithoutResponse [write

[notify indicate

[signedWrite [] extendedProperties

dynamic [authenticationRequired

[authorizationRequired

Data
Edit as a string ...
1| exee, exes, exee, exee, ex@a,

o OK ¥ Cancel

Figure 2.19: Edit Temperature Measurement

2.3.3 Write the Code

After project is created, open profile.c in IDE, and the temperature measurement characteristic
handling function att_read_callback is automatically generated by wizard.

13

2.3. THERMOMETER ’ INGCHIPS

static uintl6e_t att_read_callback(hci_con_handle_t connection_handle,
uintlé_t att_handle, uintl6_t offset,
uint8_t * buffer, uintl6_t buffer_size)

{
switch (att_handle)
{
case HANDLE_TEMPERATURE_MEASUREMENT @
if (buffer)
{
// add your code
return buffer_sizes;
}
else
return 13 // TODO: return required buffer size
default:
return 03
}
}

att_read_callback will be called twice or more when app reads a characteristic that has
dynamic property: one for querying required buffer size, and one for reading data. If data is large,
att_read_callback might be called more times, each reading a part of data specified by offset.

As discussed above, define a temperature measurement type:

typedef __packed struct gatt_temperature_meas

{
uint8 flagss
sint32 mantissa:24;
sint32 exponent:8;
} gatt_temperature_meas_t;

static gatt_temperature_meas_t temperature_meas = {0};

Now, we can complete the above case HANDLE_TEMPERATURE_MEASUREMENT clause:

case HANDLE_TEMPERATURE_MEASUREMENT:
if (buffer)
{

// simulate an "accurate" thermometer

14

’ INGCHIPS 2.4. THERMOMETER WITH FOTA

temperature_meas.mantissa = rand() % 100;
// output data
memcpy (buffer, ((uint8 *)&temperature_meas) + offset, buffer_size);
return buffer_sizes
}
else
return sizeof(gatt_temperature_meas_t)3

Build & download project, then connect to “AccurateOne” device in INGdemo app. Check if
temperature changes randomly each time Refresh button is pressed (Figure 2.20).

& AccurateOne & AccurateOne

86°C 13°C
Armpit Armpit
REFRESH REFRESH

Figure 2.20: Refresh Temperature Measurement

s A thermometer (a server) can use notification or indication procedure to notify (without ac-
m knowledge) or indicate (with acknowledge) a characteristic value, see [Thermometer with
Notification]. In this example, “AccurateOne” does not use these two procedures, and sends

its measurement passively.

2.3.4 Notification

2.4 Thermometer with FOTA

In this tutorial, we are going to add Firmware Over-The-Air update feature into our thermometer.
This SDK provides a FOTA reference design that is workable out-of-the-box. To make FOTA work,
at least three parties are involved, a device, an app, and an HTTP server. The INGdemo app is already
there, so in this tutorial, we will focus on the device and HTTP server.

2.4.1 Device with FOTA

Follow the same steps as in the previous Thermometer example to create a new project, say “ota”.

15

2.4. THERMOMETER WITH FOTA "NEEH":E

When editing advertising data, we can import data created in previous example by clicking
Open File... button of the editor. Advertising data is stored in $ (ProjectPath)/data/advertising.adv.
Let’s change device’s name to “Clickety Click”.

When editing GATT profile database, we can import data created in previous ex-
ample by clicking open File... button of the editor. GATT profile data is stored in
$(ProjectPath)/data/gatt.profile. Select INGChips Service from the drop-down menu
of Add Service button, and add “INGChips FOTA Service”. At present, we are not going to
consider security issues, so delete the “FOTA Public Key” characteristics. Next, edit characteristics
value of this service:

1. FOTA Version:

This identifies the full version number of our project. As shown in flash downloader, a whole
project is composed by two binaries, one is from SDK bundle, called platform binary, and
the other one is built from our project, called the app binary. FOTA version contains two
sub-versions, one for each binary. Each sub-version contains three fields:

* Major: A 16-bit field.
* Minor: A 8-bit field.
« Patch: Another 8-bit field.

Each bundle has its own version (so as the platform binary), using the same numbering
scheme, which can be found on sbk page of Environment Options dialog (use menu item
Tools -> Environment Options to open this dialog). Suppose platform version is 1.0.1°, and
we would like our app’s version to be 1.0.0, then we set this characteristic’s value to (Fig
2.21):

0x0001, 0, 1 // platform version
0x0001, 0, 0, // app version

2. FOTA Control

This is control point during update. Set its value to 0 (i.e. OTA_STATUS_DISABLED), which is
the initial status of FOTA.

Click oK to close GATT profile editor. (Note: do not click Save, unless you want to change the
file $ (ProjectPath)/data/gatt.profile that is opened in editor.)

Back to project wizard, press Next to proceed to the next page Firmare Over-The-Air. On this
page, let’s check FOTA. Note that characteristics handles related to FOTA is generated automatically
by inspecting the GATT profile. Then finish remaining steps on project wizard.

Open our brand-new project “ota”, copy the code from previous example to make our ther-
mometer respond to Refresh in INGdemo app.

Next, let’s make a new version.

> Apps can report a different version in FOTA. It is not reqired to be same as in Environment Options.

16

2P NGCHIPS

2.4. THERMOMETER WITH FOTA

Edit Characteristic
Properties
O broadcast

[J writeWithoutResponse

[notify
[JsignedWrite

[dynamic
[] authorizationRequired

Data

P

Bxeeel, @, 1 //
lpxeee1, e, @, //

read

Jwrite

indicate
[JextendedProperties

[J authenticationRequired

Edit as a string ..

platform versien

>

« OK X Cancel

Figure 2.21: Configure FOTA Version

2.4.2 Make a New Version

New version of our “ota” will have a new name “Barba Trick”, and app version number
is upgraded to 2.0.0. These data are saved in advertising and profile data respectively,
so right click on the project and use editors to update it. After data is updated, use Save
As ... to save data to another file in the same directory, for example, update advertis-
ing data and save it to $(ProjectPath)/data/advertising_2.adv, and updated profile to

$(ProjectPath)/data/gatt_2.profile.

Use macro V2 to control the actual advertising and profile data:

const static uint8_t adv_datal[]

#ifndef V2

#include "../data/advertising.adv"

#else

#include "../data/advertising_2.adv"

#endif
}s

const static uint8_t profile_datal]

#ifndef V2

17

2.4. THERMOMETER WITH FOTA ’ INGCHIPS

#include "../data/gatt.profile"
#else

#include "../data/gatt_2.profile"
#endif
}s

Rebuild the project with macro v2 defined, copy ota.bin and platform.bin (in
SDK_DIR/sdk/bundles/typical) to an empty directory, say ota_app_v2.

Create a file named manifest.json in ota_app_v2, with follow data in it:

{
"platform"s {
"version": [1,0,1],
"name": "platform.bin",
"address": 16384
}s
"app": {
"version": [2,0,0],
"name": "ota.bin",
"address': 163840
}s
"entry'': 16384,
"bins":[]
}

Those addresses can be found in Environment Options. entry value is fixed to 0x4000,
i.e. 16384. Note that json do not accept the popular 0xabcd hexadecimal literals. INGdemo can
download additional binaries specified by b-ins to device. In this case, we don’t have such binaries,
so this field is left as an empty array.

Then create a readme file for this update with some information about this update in it.

Now the FOTA package is ready. Make a ota_app_v2.zip ZIP archive of the whole
ota_app_v2 directory. Note that ota_app_v2 should not be made into a sub-directory in
ota_app_v2.zip. Table 2.2 summarize the files in the ZIP archive.

Table 2.2: FOTA Package Summary

File Name Notes

readme Some information about this update
manifest.json Meta information
platform.bin Platform binary

18

'INEEHIPE 2.5. IBEACON SCANNER

File Name Notes

ota.bin App binary

Back to IDE, rebuild the project leaving macro v2 undefined, then download the project.

2.4.3 FOTA Server

INGdemo app needs a FOTA server URL, defined in class Thermometer.FOTA_SERVER. Move
ota_app_v2.zip to HTTP server’s document directory, and create a latest.json file, which
contains information about latest version. Its content is:

{
"app": [2,0,0],
"platform": [1,0,1],
"package": "ota_app_v2.zip"
}

Make sure that these two files can be accessed through URL (FOTA_SERVER + latest.json)
and (FOTA_SERVER + ota_app_v2.zip).

244 Trylt

Connect to “Clickety Click” in INGdemo, click Update (Figure 2.22). Since platform.bin is up-to-
date, only app.bin need to be updated, the whole update completes in a short time. Return to the
main page, scan again and check if our new version works, a device named “Barba Trick” appearing.
Connect to “Barba Trick”, firmware is up-to-date now.

FOTA solution, from version definition to FOTA service and characteristics. It also possible

This tutorial gives an example on FOTA implementation. Users are free to design a new
to develop a dedicated secondary app for FOTA.

Security must be considered.

2.5 iBeacon Scanner

We already know to how to make iBeacon devices. In this tutorial, we are going to create an iBeacon
scanner.

A scanner plays a central role in Bluetooth pico network. As always, we create a new project
named “iscanner” in wWizard (Fig 2.23). On Role of Your Device page, select Central. A central

19

2.5. IBEACON SCANNER ’|NEEH|F‘5

< Clickety Click

72°C
Armpit

REFRESH

Update Available UPDATE

Local: app: 1.0.0 | platform : 1.0.1
Latest:app: 2.0.0 | platform : 1.0.1
Getting a new name: "Barba Trick".

Figure 2.22: Update Available for ”Clickety Click”

device almost always scans for something then performs other actions, and our new project wizard
automatically adds codes to start scanning.

@ iscanner.eww

Ci\temphiscanneriiscanner.eww

Figure 2.23: ”iscanner” Created for IAR Embedded Workbench

Open this new project in IDE, and navigate to function user_packet_handler. We can see
there is an event called HCI_SUBEVENT_LE_EXTENDED_ADVERTISING_REPORT:

case HCI_SUBEVENT_LE_EXTENDED_ADVERTISING_REPORT:

{
const le_ext_adv_report_t *report = decode_hci_le_meta_event(packet,
le_meta_event_ext_adv_report_t)->reportss
// ...
}
break;

Each time this event is received, we can check if the advertising report contains 6xFF -
«Manufacturer Specific Data», and if it is an iBeacon packet. With the knowlegde of making
an iBeacon device, it is straight forward to define an iBeacon packet type in C.

20

’INEEHIPE 2.5. IBEACON SCANNER

typedef __packed struct -ibeacon_adv
{

uintle_t apple_ids

uintle_t dd;

uint8_t uuid[16];

uintlé_t majorsg

uintlé_t minorsg

int8_t ref_powers;
} ibeacon_adv_t;

#define APPLE_COMPANY_ID 0x004C
#define IBEACON_ID 0x1502

__packed is an extended keyword to specify a data alignment of 1 for a data type. Fortunately,
it is supported by both ARM and IAR compilers. Alternatively, one can use #pragma pack directive:

#pragma pack (push, 1)
typedef struct ibeacon_adv

{

} ibeacon_adv_t;
#pragma pack (pop)

Before proceeding, let’s create a helper function that converts an UUID to a string.

const char *format_uuid(char xbuffer, uint8_t *uuid)

{
sprintf(buffer, "{%02X%02X%02X%02X-%02X%02X-%02X%02X-""
"%02X%02X-%02X%02X%02X%O02X%02X%02X}" ,
uuid[0], uuid[1], uuid[2], uuid[3],
uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9],
uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]):
return buffers;
}

2.5.1 Distance Estimation
The received signal strength indication (RSSI) is reported together with advertising data. Generally,
the intensity of electromagnetic waves radiating from a point source is inversely proportional to the

square of the distance from the source. The well known equation for free space loss is:

21

2.5. IBEACON SCANNER ’ INGCHIPS

Loss = 32.45 + 20log(d) + 20log(f)

Where d is in km, f in MHz and Loss in dB. By comparing RSSI and measured power at
a distance of 1 meter (ref_power), we can grossly estimate the distance between the scanner and
beacon using the free space loss equation:

double estimate_distance(int8_t ref_power, int8_t rssi)

{

return pow(10, (ref_power - rssi) / 20.0);

Now, we are able to make a fully functional iBeancon scanner in less than twenty lines:

uint8_t lengths
ibeacon_adv_t *p_ibeacon;
char str_buffer[80];
const le_ext_adv_report_t *reports
case HCI_SUBEVENT_LE_EXTENDED_ADVERTISING_REPORT:
report = decode_hci_le_meta_event(packet,
le_meta_event_ext_adv_report_t)->reports;
p_ibeacon = (ibeacon_adv_t *)ad_data_from_type(report->data_len,
(uint8_t *)report->data, Oxff, &length);

if ((length != sizeof(ibeacon_adv_t))
|| (p_ibeacon->apple_id != APPLE_COMPANY_ID)
|| (p_ibeacon->id != IBEACON_ID))
break;

printf("%s %04X,%04X, %.1fm\n",
format_uuid(str_buffer, p_ibeacon->uuid),
p_ibeacon->major, p_ibeacon->minor,
estimate_distance(p_ibeacon->ref_power, report->rssi));
break;

Use the Locate app to transmit iBeacon signal, and check if our device can found it (Figure
2.24). Finaly, since RSSI value fluctuates, one can add a low pass filter on RSSI to make the
estimation more stable.

s Note that the size of this app’s binary increases dramatically. This is mainly because that
Cortex-M3 don’t have a hardware floating-point unit and floating-point operations are all
performed by library functions. Think twice before using floating-point operations.

22

'INEEHIPE 2.6. NOTIFICATION & INDICATION

[14:88:53.135] {2F234454-CFeD-4ABF-ADF2-F4911BASFFAG} B808,0008, 2.Em
[14:88:53.184] {2F234454-CFeD-4ABF-ADF2-F4911BASFFAR} B008,0008, 4.8m
[14:88:53.232] {2F234454-CFeD-4ARBF-ADF2-F4911BASFFAR]} B000,0008, 3.5m
[14:88:53.296] {2F234454-CFeD-4ABF-ADF2-F4911BASFFAR} B808,0008, 2.8m

Figure 2.24: iBeacon Scan Result
2.5.2 Concurrent Advertising & Scanning

As an exercise, we can merge iBeacon project with this one, and check if our device can send
iBeacon signals while keeps scanning for other iBeacon devices.

in one direction at one time and data reception occur at another time, and it’s impossible to

Bluetooth radio uses TDD (Time Division Duplex) topology in which data transmission occur
receive its own iBeacon signal.

2.6 Notification & Indication

A server can use notification or indication procedure to notify (without acknowledge) or indicate
(with acknowledge) a characteristic’s value. Now, let’s add notification and indication features to
our thermometer we have created in a previous tutorial.

To notify or indicate a characteristic’s value, we use att_server_notifyand att_server_indicate
respectively. These APIs must be called within the Bluetooth stack (Host) task.

Unsolicited notifications and indication may be triggered by a timer or interrupts, i.e. by
sources outside of Bluetooth stack task. To call these Bluetooth stack APIs, inter-task commu-
nication mechanism based on RTOS messages is provided.

2.6.1 Inter-task Communication

btstack_push_user_msg can be used to send a message into Bluetooth stack stack:
uint32_t btstack_push_user_msg(uint32_t msg_id, void *data, const uintl6é_t len);
This message will be passed to your user_packet_handler under event ID BTSTACK_EVENT_USER_MSG:
static void user_packet_handler(uint8_t packet_type, uintl6_t channel,
uint8_t *packet, uintl6_t size)

uint8_t event = hci_event_packet_get_type(packet);

23

2.6. NOTIFICATION & INDICATION ’INEEHIPE

btstack_user_msg_t *p_user_msg;
if (packet_type != HCI_EVENT_PACKET) returns

switch (event)
{

V2
case BTSTACK_EVENT_USER_MSG:

p_user_msg = hci_event_packet_get_user_msg(packet);
user_msg_handler (p_user_msg->msg_id, p_user_msg->data,
p_user_msg->len)

Here, we delegate the handling of the user message to another function user_msg_handler.
Note that user_msg_handler is running in the context of Bluetooth stack task, and we are allowed
to call those Bluetooth stack APIs now.

Event BTSTACK_EVENT_USER_MSG is broadcasted to all HCI event callback functions.

2.6.2 Timer

Now let’s make our thermometer “AccurateOne” to update its value once per second. Firstly, create
a timer in initialization, such as in app_main or setup_profile.

TimerHandle_t app_timer = 03

uint32_t setup_profile(void *data, void *user_data)

{
app_timer = xTimerCreate("app",
pdMS_TO_TICKS(1000),
pdTRUE,
NULL,
app_timer_callback)
/) ...
}

Timer callback function is defined as:

24

’INEEHIPE 2.6. NOTIFICATION & INDICATION

#define USER_MSG_ID_REQUEST_SEND 1
static void app_timer_callback(TimerHandle_t xTimer)
{

if (temperture_notify_enable | temperture_indicate_enable)
btstack_push_user_msg(USER_MSG_ID_REQUEST_SEND, NULL, 0);

This timer is started when we get HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE in
HCI_EVENT_LE_META, and stopped when we get HCI_EVENT_DISCONNECTION_COMPLETE.

Here temperture_notify_enable and temperture_indicate_enable are two flags initialized
as Os and set to 1 in att_write_callback:

static int att_write_callback(hci_con_handle_t connection_handle,
uintlée_t att_handle, uintl6_t transaction_mode,
uintlée_t offset, uint8_t *buffer, uintl6_t buffer_size)

{
switch (att_handle)
{
case HANDLE_TEMPERATURE_MEASUREMENT + 1:
handle_send = connection_handle;
switch (*(uintl6_t *)buffer)
{
case GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_INDICATION:
temperture_indicate_enable = 13
break;
case GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION:
temperture_notify_enable = 13
break;
}
return 03
I ooc
}
}

Here we store connection_handle to a global variable handle_send which will be used later.
The last piece of code is to handle message USER_MSG_ID_REQUEST_SEND in user_msg_handler:

static void user_msg_handler(uint32_t msg_id, void *data, uintl6_t size)

{
switch (msg_id)
{

25

2.7. THROUGHPUT

B NGCHIPS

case USER_MSG_ID_REQUEST_SEND:
att_server_request_can_send_now_event(handle_send);
break;

And report temperature in ATT_EVENT_CAN_SEND_NOW:

case ATT_EVENT_CAN_SEND_NOW:

temperature_meas.mantissa = rand() % 100;
if (temperture_notify_enable)

{
att_server_notify(handle_send,
HANDLE_TEMPERATURE_MEASUREMENT,
(uint8_t*)&temperature_meas,
sizeof (temperature_meas));
}

if (temperture_indicate_enable)

{
att_server_indicate(handle_send,
HANDLE_TEMPERATURE_MEASUREMENT,
(uint8_tx)&temperature_meas,
sizeof (temperature_meas));
}
break;

Try to rebuild and download the project, and check if the temperature value shown in INGdemo

changes once per second.

.

There is a fully functional thermometer example, a.k.a thermo_ota, supporting FOTA, noti-
fication and indication.

2.7 Throughput

BLE 5.0 introduces a new uncoded PHY with a sampling rate at 2M.

26

'INEEHIPE 2.7. THROUGHPUT

2.7.1 Theoretical Peak Throughput

Maximum payload length is 251 bytes for a Data Physical Channel PDU. Using 2M PHY, it takes
1048 ps to transmit. And an empty Data Physical Channel PDU takes 44 ps to transmit.

To achieve maximum throughput on one direction, length of all PDUs on this direction should
be 251 bytes, while on the other direction, all PDUs should be empty. So, the transmission of 251
bytes takes a total duration of

1048 + 44 + 150 % 2 = 1392(us)
Therefore, the theoretical peak throughput provided by link layer is
251 % 8/1392 % 1000000 ~ 1442.528(kbps)
For an app working above GATT, [2CAP and ATT all have their own overhead. Typically,
GATT has a maximum effective payload of (251 - 7 =) 244 bytes. So, GATT could provide a

theoretical peak throughput of

244 % 8 /1392 * 1000000 ~ 1402.298 (kbps)

2.7.2 Test Throughput

There are a pair of examples in SDK for throughput testing (Figure 2.25).

8 ®
Profile Editor Custom Services

central_throughput peripheral_throughput
DE Ci/projects/svn/SDK_Release/examplesicer DE Ci/projects/svn/SDK_Releass/examples\pe

In this demao, you will lean how to: In this demo, you will lean how to:

Search Project:

|thr |x

About ...

* Use central (master) role to: * Inputfoutput raw data with master;
* Scan & connect to peripheral devices; * Measure GATT throughput.
* Discovery services & characteristics defined by
* Get notification when characteristics value upd:
* Write ta characteristics value.

Figure 2.25: Examples for Throughput Testing

2.7.2.1 Test against INGdemo

Download peripheral_throughput. Use INGdemo to connect to ING Tpt, and open throughput
testing page. On this page, we can test throughput from master to slave, from slave to master, or on
both directions simultaneously.

Figure 2.26 shows that using a common low end Android phone with 2M PHY support, we
can achieve a 1M+ bps throughput over the air.

27

2.7. THROUGHPUT

4P NGCHIPS

< INGChips Throughput Service

m>s: s-m: 1100.05 kbps
MTU=1978

M->S START M->S STOP

S->M START S->M STOP

To test on both directions: 1. S->M Start; 2. M->S Start; ...;
3. M->S Stop; 4. S->M Stop.

BLE Throughput

2000

= 4
1500

Throughput (kbps)

1000

T
15:46:30
Time

Figure 2.26: Througput on an Android Phone

2.7.2.2 Test against Our Own App

Example central_throughput demonstrates the typical procedure for a BLE central device:

PN

Scan and connect to a device that has throughput service declared in its advertising
Discover throughput service;

Discover characteristics of the service;

Discover descriptors of characteristics.

INGChips Throughput Service has two characteristics.

* Generic Output

By this characteristic, peripheral device send data to central device.

This characteristic has a Client Characteristic Configuration descriptor.

* Generic Input

By this characteristic, central device send data to peripheral device.

Download central_throughput to another board. This app has a UART command line in-
terface to host computer. Connect to a host computer, type “?” to check supported commands.
This app connects to peripheral_throughput automatically. Input command start s->mor start
m->s to start testing throughput from peripheral to central, or from central to peripheral, receptively.

Figure 2.28 shows that using two boards, we have achieved a stable throughout at 1.2M+ bps

over the air.

28

P NGCHIPS

2.8. DUAL ROLE & BLE GATEWAY

.

show this
start throughput test on dir
dir stop throughput test on dir

: dir = s->m, or m->s
start s->m

Figure 2.27: Command interface

(Mbps)
1.40¢

1358
1.30F
1.20F

115

1.10 t
5 10 15 20 25

Figure 2.28: Througput Between Boards

This throughput is tested over the air, a little bit lower than theoretical peak value, but much
more practical.

2.8 Dual Role & BLE Gateway

In this tutorial, we are going to create a BLE gateway, which collects data from several peripheral
devices and reports data to a central device. When collecting data, this gateway is a central device,
while reporting data, it is a peripheral device, i.e., our app has two roles.

More specifically, our gateway only supports to collect data from thermometers. Let call it a

smart_meter.

smart_meter uses a generic string based output service for report data to a central device, such

as the INGdemo running on a smart phone. It also has a UART control interface connecting to a host
computer.

.

Checkout the example peripheral_console for how to do string input & output.

Full functional smart_meter app is also provided as an example. Take this example as an
reference while creating your own.

Now, let’s create this BLE gateway.

2.8.1 Use wizard to create a peripheral app

Use GUI editor to edit advertising data, naming our app as “ING Smart Meter”.

29

2.8. DUAL ROLE & BLE GATEWAY ’INEEHIPE

ING BLE

UART I

smart_meter

thermo_ota

Figure 2.29: Smart Meter Overview

Use GUI editor to edit GATT Profile. Add INGChips Console Service into GATT Profile
(Figure 2.30).

/" GATT Profile Editor - [C:/projects/svn/SDK_Release/examples\smart_ meter\data\gatt.profile]

= = & t ¥ X = H
Add Service Remove Edit Move Up Move Down Delete All Save Save £
MName Handle

8§ Generic Access

= § INGChips Console Service

+- C Generic Input HANDLE_GENERIC_INPUT
= G Generic Output HANDLE_GENERIC_OUTPUT
+ \ Fields

- [Descriptors
+- [Client Characteristic Configuration HANDLE_GENERIC_OUTPUT_CLIENT_CHAR_CONFIG

Figure 2.30: Smart Meter GATT Profile

2.8.2 Define Thermometer Data

A thermometer is identified by its device address and id. Each thermometer uses its own connection
identified by conn_hand1e.

typedef struct slave_info

{
uint8_t ids
bd_addr_t addrs
uintle_t conn_handles
gatt_client_service_t service_thermos
gatt_client_characteristic_t temp_chars;

30

,INEEHIPE 2.8. DUAL ROLE & BLE GATEWAY

gatt_client_characteristic_descriptor_t temp_desc;
gatt_client_notification_t temp_notifys
} slave_info_t;

Define four thermometers.

2.8.3 Scan for Thermometers

Call two GAP APIs to start scanning. Once a device is found, check whether its device address is
one of the thermometers. If so, stop scanning and call gap_ext_create_connection to connect.

After connection established, if there is any thermometer not connected, then start scanning
again.
2.8.4 Discover Services

After connection established, call gatt_client APIs to discover its services.

These APIs follow a similar logic like Android, iOS.

2.8.5 Data Handling
Subscribe to thermometer’s Temperature Measurement characteristic. When a new measurement

is received, convert the value into a string and report it to a host computer. If our app is already
connected to a central device, forward this information to it through GATT characteristic.

2.8.6 Robustness

To make our app more robust:

* If disconnected from a thermometer, then start scanning;

* If disconnected from a central device, then start advertising.

2.8.7 Prepare Thermometers

We can use example thermo_ota as thermometers. But we need to configure different address for
each one.

We can write a simple script for downloader to generate these addresses automatically:

31

2.9. START FROM EXAMPLES ’ INGCHIRS

procedure OnStartBin(const BatchCounter, BinIndex: Integer;
var Data: TBytes; var Abort: Boolean);

begin
if BinIndex <> 6 then Exit;
Data[0] := BatchCounter;
end;

For further information on downloader scripting, see Scripting & Mass Production.

2.8.8 Test

Input command start on host computer to start our app (start scanning & advertising). Use INGdemo
to connect to a device named “ING Smart Meter” and check temperature measurements.

Turn off and on one or more thermometers, and our app should be able to reconnect to them.

2.9 Start from Examples

Wizard main interface displays all the examples included with the SDK. Developers can directly
modify the examples and see the effects. When the SDK is reinstalled, these modifications will be
overwritten. If developers need to develop a project based on an example, you can select “Copy
this Example ...” from the popup menu to fully copy the example to another location.

32

’INEEHIPE 2.9. START FROM EXAMPLES

Anti-Lost (Peripheral)
DZ' C:/Users/zjli/AppData/Roaming/Local/Program,

This example demonstrates how to:

* Make an anti-lost kit based on active scannina:
* Send scannable advert @ Open Project...
* Use white list; J

_ | il OpenFolder...
* Use GPIO/PWM (see n

Open With VS Code...
More info ...

Rebuild
Download ...

«F 8

Edit Data >
Edit with Cube ...
Check & Fix ...

@

N

Update SDK ...
|| Copy this Example ... > [£] Link to SDK
[l Copy SDK to My Project

Change Series >

¥ AxfTools >

¥ Remove Project

Figure 2.31: Copy an SDK Example

33

2.9. START FROM EXAMPLES

34

Chapter 3

Core Tools

SDK core tools play an important role in the BLE device development.

3.1 Wizard

Wizard is the recommended entry point in the whole development life cycle. With it, we can create
& open project, edit project data, and migrate projects, etc.

1. Create Project

wizard’s new project wizard assists the creation of new projects. We can select favourate
IDE, peripheral role, edit advertising and profile data, enable FOTA and logging, etc.

Once a project is created, following files are also created, used by wizard but not IDE, and
they shoule not be deleted, or wizard will not to function properly:

* $(ProjectName) .ingw
This file shares the same name with the project with an extension .-ingw. It contains
crucial information about the project and SDK. Without this information, it becomes
impossible to do migration.

2. Advertising Data Editor
This editor helps us to generate advertising data. It can also be opened from main menu Tools
-> Advertising Data Editor

3. GATT Profile Editor (or GATT/ATT Database Editor)

This editor helps us to build GATT profile data. It can also be opened from main menu Tools
-> Profile Database Editor ...

This editor supports three type of services, SIG defined services, INGChips defined services
and user defined services. To add an user defined service, it must be create beforehandle (see
below).

35

3.2. DOWNLOADER ’NEEH"’E

4. Manage Custom Services

This editor can be opened from main menu Tools -> Manage Custom GATT Services ...
We can add, delete and edit custom services.

Custom Services and characteristics are all named with a prefix which is deduced from com-
pany name initialized when installing SDK, and updatable through Environment Options.

5. Migration

In case a new version of SDK is installed, ROM and RAM used by platform might be changed,
so projects settings need to be updated accordingly. This process is automated by right click
on a project and select Check & Fix Settings ...

Alway remember to backup your project before perform a migration, either by committing all
changes into version control system or making a full backup.

3.2 Downloader

3.2.1 Introduction

This downloader downloads up-to six images (binaries) to flash through UART or USB connection.
It co-operate with bootloader. Bootloader can be made into flash downloading mode either by:

« Asserting boot pin' (this is used in the vast majority of cases),

+ Setting entry point which is stored Flash to an invalid address (Only on ING918).

When ING918 is powered on, bootloader checks above conditions. If any conditions are true,

bootloader sends the handshaking message. When ING916 is made into flash downloading mode,
bootloader will check GPIO15: if its level is high, USB port is also enabled.

Tips on different types of debuggers:

* ING-DAPLink: pressing the “Load” button on Downloader’s main UI or the “Load” button
on the debugger will make Bootloader into flash downloading mode;

 Other debuggers: pressing the “Load” button on the debugger will make Bootloader into flash
downloading mode;

+ Third party debuggers: Asserting boot pin while releasing Reset will make Bootloader into
flash downloading mode.

1ING918 has a dedicated boot pin, while ING916 reuses GPIOO0.

36

,INEEHIPE 3.2. DOWNLOADER

User can download any files, although typically these files are generated by IDE tools. The load
address of image (binary) must be aligned at flash erasable unit boundary (EFLASH_ERASABLE_SIZE).

» ING918: each erasable unit is a page

The load address of image (binary) must be aligned at flash page boundary. Each flash page
has $8192 (ex2000) bytes. Flash starts from 0x4000, so the load address should be ox4000 +
X * 0x2000, where X is an integer.

» ING918: each erasable unit is a sector

The load address of image (binary) must be aligned at flash sector boundary. Each flash
sector has 4096 (0x1000) bytes. Flash starts from 0x02000000, so the load address should be
0x02000000 + X * 0x1000, where X is an integer.

Downloader complains if the load address is not correct. Note that when this downloader is
started from wizard, binaries have already been correctly configured.

Click Setup UART ... or Setup Port ... to configure communication port (Figure 3.1).
Users need to set Port Number to the value shown in Windows Device Manager, for example, if
“COMS9” is used, then set Port to CoM9, or simply 9. For chips that support downloading through
USB, Port can be set to USB to select the default USB device. Baud rate can be set to a value larger
than 115200, such as 460800, 921600, etc, to achieve a faster download speed. The maximum sup-
ported baud rate is 921600. Due to the limitation of internal flash characters, there isn’t any further
significant improvement for baud rate larger than 512000. Other fields should be left unchanged.

Setup UART x
Baud 115200
Data Bits 8

Parity
Port Number 5

Stop Bits 1

o OK

Figure 3.1: Configurate UART

The whole downloading procedure is composed of several steps, such as downloading, veri-
fication, set entry address, and launching app. These steps can be configured by clicking Options
(Figure 3.2).

Entry address specifies the entry point of the program. For ING918, if platform binary is used,
entry address must be set to ©x4000 which is also the load address of platform binary. For ING916,
entry address is ignored if the address is not in the range of RAM.

If “Verify Download” is enabled, then data will be read back and compare with origin file to
ensure data is correctly downloaded. Data blocks are CRC checked, so “Verify Download” can

37

3.2. DOWNLOADER ’ INGCHIPS

Setup Downloading Options n
v |Batch
v |Counter
Current 15
Limit -1
Enabled [(False)

Launch App
v |Read Protection
Enabled [(False)
Unlock Before Download | [] (False)
v |Set Entry Address
Address 0x4000
Enabled (True)
Use Script [(False)
v |Verify Download
Enabled [(False)

Redownload On Failure (True)

+ OK

Figure 3.2: Downloader Options

be kept disabled on a regular basis. If downloading keeps failing on specific address, then we can
enable it to double check if flash is malfunctioned. In this case, when mismatch is found, read-back
data will be stored to a file.

When “Batch” mode is enabled, downloader will keep waiting for bootloader handshaking, and
once received handshaking, downloading starts; after downloading completes, downloader will start
waiting again. When “Batch” mode is disabled, downloader will no longer wait for handshaking
after downloading completes.

Click start to start downloading, or rather start waiting for handshaking. Bootloader sends
handshaking message only once, and if chips are already powered up, it may be too late to receive
handshaking. In this case, we can click Force to skip handshaking and start downloading immedi-
ately.

3.2.2 Scripting & Mass Production

This downloader supports powerful scripting, making it suitable for mass production. In the script,
two event handlers (functions) are required to be defined.

* OnStartRun
This event handler gets called when each round of downloading starts;

* OnStartBin

This event handler gets called when a binary starts downloading. Here, binary data can be
modified on-the-fly before it is written into flash.

When “Batch” mode is enabled, this downloader keeps a counter which is increased by 1 after
downloading finishes. This counter is shown as Counter.Current shown in Figure 3.2. There is

38

’INEEHIPE 3.2. DOWNLOADER

also a variable called Counter.Limit. In “Batch” mode, before a new round of downloading starts,
Counter.Current is checked against this limit, if it is larger than limit, “Batch” mode stops auto-
matically. For example, if Counter.Current and Counter.Limit are set to 10 and 13 respectively,
then “Batch” mode will run for 4 rounds in total, with Counter.Current equals to 10, 11, 12 and
13. After “Batch” mode stops, Counter.Current equals to 14.

The language used for scripting is RemObjects Pascal Script?, which is quite similar to c,
and easy to develop. Below is an simple but working example, in which, the batch round number
(BatchCounter) is written to a fixed location in the binary.

// we can use constants
const
BD_ADDR_ADDR = $1;

// BatchCounter is just Counter.Current
procedure OnStartRun(const BatchCounter: Integer; var Abort: Boolean);
begin
// Use #Printx for logging and debugging
Print('OnStartRun %d', [BatchCounter]);
// we can abort downloading by assigning True to *Abortx
// Abort := True;
end;

procedure OnStartBin(const BatchCounter, BinIndex: Integer;
var Data: TBytes; var Abort: Boolean);

begin
// Note that BinIndex counts from 1 (not 0), just as shown on GUI
if BinIndex <> 2 then Exit;
// We can modify binary data before it is downloaded into flash
Data[BD_ADDR_ADDR + 0] := BatchCounter and SFF;
Data[BD_ADDR_ADDR + 1] (BatchCounter shr 8) and $FF;
Data[BD_ADDR_ADDR + 2] (BatchCounter shr 8) and S$FF;

end;

3.2.3 Flash Read Protection

To protect illegal access of data & program stored in flash, 918xx has a read-protection mechanism.
Once read-protection is enabled, JTAG/SW and this downloader can not be able to access flash any
more. To re-enable JTAG/SW debugging functionality and downloading, the read-protection must
be turned off by a procedure called unlock. Flash data is erased in this procedure.

Once the app is ready to ship, and it is decided that data & program must be protected from
illegal access, just enable “Read Protection” as shown in Figure 3.2. To download program into a

Zhttps://github.com/remobjects/pascalscript

39

https://github.com/remobjects/pascalscript

3.3. TRACER ’lNEEHIPE

read protected, check Unlock Before Download option. As flash data is erased during unlocking,
do not forget to re-download platform binary.

All configurations are stored in an ini file.

3.2.4 Python Version

SDK also provides a Python version downloader (icsdw.py). It’s open source and easy to be inte-
grated with other tools.

This version is written in Python 3. It uses PySerial® package to access serial port, so run
“pip install pyserial” to install the package.

Python downloader shares the same ini file with only one exception: Scripting. The GUI
downloader stores RemObjects Pascal source code with key named “script” in section “options”,
while the python version stores the path to a user module. The path can be a full path or a relative
path (relative to the location of the ini file).

In the user module, two methods are required to be defined to handle events as in the GUI
downloader, on_start_run & on_start_bin. Below is an example, in which, the batch round
number (batch_counter) is written to a fixed location in #2 binary.

return abort_flag
def on_start_run(batch_counter: 1int):
return False

return abort_flag, new_data
def on_start_bin(batch_counter: 1int, bin_index: int, data: bytes):
if bin_index != 2:
return False, data
ba = bytearray(data)
addr = batch_counter.to_bytes(4, 'little')
ba[l:5] = addr
return False, bytes(ba)

3.3 Tracer

Tracer is the visual tool for inspecting recorded Trace data introduced in Debugging & Tracing.

To limit items drawn on screen, Tracer breaks trace data into frames. Each frame has a length
of 5sec. When a frame is selected, besides the current frame, the previous and the next one are also
shown for continuity.

3https://pypi.org/project/pyserial/

40

https://pypi.org/project/pyserial/

4P NGCHIPS

3.3. TRACER

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
90000
95000
100000
105000

115000

Frames (Ssec)

Legacy Adv

231, 397
SO PN IARRIARMRITRINImIRIRRIRIERED
slave slave
e |11 T HH

Frame «
Browser = |

+4525.635

ACL

Length: 59

RTC: @x00373CCB (110474.945ms)

= Packet: HCI Event
LE Meta Event
Length: 57

423.65ms

slave

| Graph

+68.939

A | F BE 3B 00 CB 3C 37 00
3 61 93 €1 RE 07 01 00
2 00 00 00 1F 1E FF 06
4 5D 15 3B A8 9A 44 1D
J €0 F2 2B

5 LE ExteMm rg ort
Num_Reports: a ED

Event_Time: 16

Decoder

Address: @7:AE:61:93:61:88

Primary_PHY: 1
Secondary_PHY: @

v
>

Legacy Adv Legacy .

+662.598 (3.72ms) +1464.935 (-

slave slave

+998.932

+736.786

02 3£ 39 oD ol [NE M o1 1% -E<7-->9- -

EF 7F A2 00 00 00 00 00 | “a“a@-- -1~ ----

00 01 09 20 02 C7 54 A7 B SRRl

F8 SF 39 S5E 67 0B €D CC | z -«"3D-g_9*g-ml
“o+

Message Hex
Viewer

Figure 3.3: Tracer Main Ul

Graph shows all trace data visually. By clicking an item in Graph, detailed information is
decoded and shown in Message Decoder and Message Hex Viewer. Graph supports some of CAD
operations, such as zooming, panning, measuring, etc. Checkout menu Help -> About for detailed
information. (Figure 3.3)

LL_PING_RSPry

ATT_HANDLE_VALUE_NTF i

ATT_WRITE_REQ -

ATT_WRITE_RSP

ATT_HANDLE_VALUE_NTF -

LL_PING_REQ:

LL_PING_RSP

LL_CHANNEL_MAP_IND|

LL_TERMINATE_IND

Disconnected)

Peer

Device
LLCP LLCP

Device
ATT

Device

L2CAP |

Peer
ATT

Peer

| L2cAP | sM

Device
sM

Peer |

RTC: @x@@5AFF59 (181994.904ms)

Packet:

Dire

HCL ACL
ction: Sent

Connection Handle: @
Length: 14

CID: Attribute protocol
ATT_WRITE_REQ

Attribute Handle: 37
Attribute Value: <<@@, 13, 0@, 60, @0, &1, 14, @8, 03,

14, 60>>

Figure 3.4: MSC Generated by Tracer

To help analyzing app & high layer issues, ingTrace can generate MSC (message sequence
chart) for each connection. While Graph emphasizes on timing between events, MSC emphasizes

41

3.4. AXF TOOL ’|NEEH|PE

on procedure and fits better for protocol analysis. Message can be decoded by clicking on the [+]
mark (Figure 3.4).

3.4 Axf Tool

Axf Tool is a command line tool analyzing executables and memory dump, which can be invoked
from popup menu on a project in Wizard. It has several functionalities:

+ stack-usage: Statically analyze stack usage, and report call chains with top N maximum stack
depth.

* bt-api-thread-safety: Audit the usage of Bluetooth API, and check thread confinement.
+ call-stack: Try to recover call stack from memory dump.

* history: Give a brief history of BLE activities.

* check-heap: Try to check for errors in heaps.

* check-task: Runtime check of FreeRTOS tasks with the help of dump.

Use axf_tool.exe help {function} to get help on a specific functionality.

3.5 Al Shortcuts

Al Shortcuts is a tool that brings the power of Al to help on a collection of code and text related
tasks by simplify pressing a hot key.

3.5.1 Installation

This tool is an optional component of SDK and is not installed with SDK, but installed later by the
Wizard.

Open AI Shortcuts page of the Environment Options dialog (menu item Tools ->
Environment Options), configure it properly and click “Install” button to install it. Wizard will
select a proper LLM (Large Language Model) according to GPU VRAM size. Still, user can still
make his own choice, for example, try a larger model on CPU.

42

’INEEHIPE 3.5. Al SHORTCUTS

3.5.2 Usage

After installed, click “Al Shortcuts” button to start this tool.
Select a block of code, press the hot key, and click a button on the main UI.

When this tool is minimized to the system tray, use pop menu to quit this tool. There is a
“Feel Lucky” menu item on the pop menu. When it is selected, tasks like “Generate Comments”
will apply the generated comments to the selected code directly; when not selected, developers can
click “Retry” button to re-generate if not satisfied with the result.

43

3.5. AI SHORTCUTS

44

Chapter 4

Dive Into SDK

This chapter discusses some important topics that are critical to use SDK efficiently.

4.1 Memory Management
There are mainly three type of memory management methods:

1. Statically allocated global variables
Dynamically allocated and freed on stack
3. Manually allocated and freed on heap

N

wizard, RAM settings is configured properly. Developers are not suggested to modify these

RAM is shared between platform and user applications. When a new project is created by
settings.

4.1.1 Global Variables

This is the recommended way to define variables that have a full lift span in the app. They are
allocated in the fixed location and their content can be checked easily in debugger.

4.1.2 Using Stack

For variables that are only used within a limited scope, such as a function, we can allocated them
on stack.

Cares must be taken that size of stack is limited, and it might overflow if too much memory is
allocated.

45

4.1. MEMORY MANAGEMENT ’ INGCHIPS

1. The app_main function & interrupts serving routines shares the same global stack with plat-
form’s main function.

For RTOS bundles, this stack is defined in platform binaries as 1024 bytes, and can be replaced
by a user defined one with the help of platform_install_isr_stack.

For “NoOS” bundles, this stack is defined in app binariy as usual.

2. Callback functions registered into Bluetooth stack shares the same task stack with the stack
task, whose size is defined as 1024 bytes, and about half is left to be used by app.

3. Developers can create new tasks by calling RTOS APIs. In these cases, stack size should be
carefully examined.

o Use tools to check required stack maximum depth of functions.

4.1.3 Using Heap

Generally, heap is not a recommended way for memory management in embedded applications.
There are several cons included but not limited to:

» Space Overhead

Some bytes are wasted to store extra information and extra program.

» Time Overhead

It costs cycles to allocate and free memory blocks.

» Fragmentation

Based on these considerations, the heap used by malloc & free has been totally disabled by
setting its size to 0. If such heap is TRULY required, it can be re-enabled by changing its size to a
proper value when creating projects. Be sure to check follow alternatives before using malloc &
free:

» Use global variables

+ Use memory pool!

This is probably the choice for most cases.

* Use FreeRTOS’s heap and memory functions, pvPortMalloc & pvPortFree

Note that this heap is used by platform & FreeRTOS itself, and it may not have too much free
space left for apps. The standard malloc & free can be configured to be overridden and
backed by pvPortMalloc & pvPortFree when setting up heap in wizard. Once overridden,
the allocator from libc is omitted, and malloc & free are implemented by pvPortMalloc &
pvPortFree respectively.

thttps://en.wikipedia.org/wiki/Memory_pool

46

https://en.wikipedia.org/wiki/Memory_pool

,INEEHIPE 4.2. MULTITASKING

4.2 Multitasking
It is recommend to have a check on Mastering the FreeRTOS™ Real Time Kernel. Some tips:

1. Do not do too much processing in interrupt handlers, but defer it to tasks as soon as possible

2. Callback functions registered into Bluetooth stack are executed in the context of the stack
task, so do not do too much processing in these functions either

3. Use message passing function btstack_push_user_msg or other special functions® to get
synchronized with Bluetooth stack (see Inter-task Communication)

4.3 Interrupt Management

To create traditional ISR for interrupts, apps only need to register callback functions through a
platform API platform_set_irq_callback.

Apps can use following APIs to modify interrupts configuration and states:

* NVIC_SetPriority

Note that the highest allowed priority is configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY
+ 2, i.e. that priority parameter must be larger than or equal to this value, indicating a lower
or equal priority.

* NVIC_EnableIRQ
* NVIC_DisableIRQ
* NVIC_ClearPendingIRQ

e etc...

4.4 Power Management

In most case, platform manages the power saving feature of ING918xx/ING9186xx SoC automati-
cally and tries the minimize the power consumption in all circumstances, with only one exception,
deep sleep.

In deep sleep, all components, except those required for power saving control and real-time
clocks, are powered down. Some peripherals may be used by apps, and platform does not know
how to configure them. So, apps have to get involved in the waking up process after deep sleep.
Platform will also check with app if deep sleep is allowed, and fall back to less aggressive power
saving modes when deep sleep is not allowed.

btstack_push_user_runnable. See Thread Safety in Developer’s Guide for Bluetooth LE.

47

4.5. CMSIS API ’lNEEHIPE

To use deep sleep, two callback functions are needed, see platform_set_evt_callback. To
ease development & debug, power saving can be turned on or off by calling platform_config.

Besides the above automatic power management schema, apps can also shutdown the whole
system and reboot after a specified duration. In shutdown state the whole system has the least
power consumption. See platform_shutdown. In shutdown state, a portion of data can be kept
optionally at the cost of a little more power consumption. In case of only a little piece of data
needs to be kept, SDK provides a pair of APIs for this, platform_write_persistent_reg and
platform_read_persistent_reg.

4.5 CMSIS API

SDK tries to encapsulate CMSIS APIs to ease the development. Be careful when calling these APIs
in apps as it may affect the platform program.

Following operations are strictly forbidden:

1. Changing the vector table offset register.
2. Modify configurations of internal interrupts.

4.6 Debugging & Tracing

Besides online debugging, SDK provides two methods to assist debugging.

1. printf
printf is the most convenient way to check program’s behaviour. wizard can generate nec-
essary code to use printf.

2. Trace

Internal state & HCI messages can be recorded through this trace machenism. wizard can
generate necessary code to use trace, too. There are several types of trace data, which are
predefined and can’t be changed. Which types of trace data are going to be recorded is pro-
grammable. Use

Tracer to view the recorded trace data.

Table 4.1: Comparison of printf and Trace

Debug Option Pros Cons
printf Universal slow
Trace Binary data, fast Data types are predefined

48

'INEEHIPE 4.6. DEBUGGING & TRACING

Both printf and trace can be directed to UART ports or SEGGER RTT®. Table 4.2 is a com-
parison of these two transport options.

Table 4.2: Comparison of UART and SEGGER RTT

Transport Option Pros Cons
UART Universal, easy to use Slower, consume more CPU cycles
SEGGER RTT Fast J-Link is required, hard to capture power up log

4.6.1 Tips on SEGGER RTT

* Use J-LINK RTT Viewer to view printf outputs in real-time.

» Use J-LINK RTT Logger to record trace outputs to files.

This logger will ask for the settings of RTT. Device name is “CORTEX-M3”. Target interface
is “SWD”. RTT Control Block address is the address of a variable named _SEGGER_RTT, which
can be found in .map file. RTT channel index is 6. Blow is a sample session.

Device name. Default: CORTEX-M3 >

Target interface. > SWD

Interface speed [kHz]. Default: 4000 kHz >

RTT Control Block address. Default: auto-detection > Ox2000xxxx
RTT Channel name or +index. Default: channel 1 > 0

Output file. Default: RTT_<ChannelName>_<Time>.log >

Connected to:
J-Link ...
S/N:

Searching for RTT Control Block...OK. 1 up-channels found.
RTT Channel description:

Index: 0

Name: Terminal

Size: 500 bytes.

Output file: log

Getting RTT data from target. Press any key to quit.

3https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/

49

https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/

4.6. DEBUGGING & TRACING "NEEH":E

Alternativaly, this tool can be called from command line. Address of_SEGGER_RTT can be
specified by a range, and the tool will search for it automatically. For examples,

JLinkRTTLogger.exe -If SWD -Device CORTEX-M3 -Speed 4000
-RTTSearchRanges "0x20005000 0x8000"

-RTTChannel 0

file_name

4.6.2 Memory Dump

We are committed to delivery high quality platform binary. If an assertion or hard fault had occurred
in platform binary, it is suggested to create a full memory dump and save all registers. Check out
Developers’ Guide for addresses of all memory regions. After a dump is got, use Axf Tool to
analyze it. If the problem can not be resolved, contact technical support.

Memory can be dumped through debuggers:

+ Keil pVision

In debug session, open the Command Window, use save to save each memory region. Take
ING918xx as an example:

save sysm.hex 0x20000000,0x2000FFFF
save share.hex 0x400A0000,0x400AFFFF

» J-Link Commander

Once connected, use regs to shows all current register values, and savebin to save target
memory into binary file. Take ING918xx as an example:

savebin sysm.bin 0x20000000 0x10000
savebin share.bin 0x400A0000 0x10000

* IAR Embedded Workbench
In debug session, open a Memory window, and select “Memory Save ...” from popup menu.

* Rowley Crossworks for ARM & SEGGER Embedded Studio for ARM

In debug session, open a Memory window, for each memory region:

1. Fill in the start address and size;
2. Use “Memory Save ...” from popup menu.

* GDB (GNU Arm Embedded Toolchain)

In GDB debug session, use dump command to save each memory region.

Memory can be also dumped by a piece of specific code. For example, in the event handler of
PLATFORM_CB_EVT_ASSERTION, dump all memory data to UART.

50

Chapter 5

Platform API Reference

This chapter describes the platform API.

5.1 Configuration & Information

5.1.1 platform_config

Configure some platform functionalities.

5.1.1.1 Prototype

void platform_config(const platform_cfg_-item_t ditem,
const uint32_t flag);

5.1.1.2 Parameters

¢ const platform_cfg_item_t -item

Specify the item to be configured. It can be one of following values:

— PLATFORM_CFG_LOG_HCI: Print host controller interface messages. Default: Disabled.

Only available on ING918. HCI logging is only intended for a quick check on BLE
behavior. Please consider using tracing (see Debugging & Tracing).

— PLATFORM_CFG_POWER_SAVING: Power saving. Default: Disabled.

— PLATFORM_CFG_TRACE_MASK: Bit map of selected trace items. Default: o.

51

5.1. CONFIGURATION & INFORMATION ’ INGCHIPS

typedef enum

{
PLATFORM_TRACE_ID_EVENT = 0,
PLATFORM_TRACE_ID_HCI_CMD =1,
PLATFORM_TRACE_ID_HCI_EVENT = 2,
PLATFORM_TRACE_ID_HCI_ACL = 3,
PLATFORM_TRACE_ID_LLCP = 4,
/Yoo

} platform_trace_item_t;

— PLATFORM_CFG_RT_RC_EN: Enable/Disable real-time RC clock. Default: Enabled.

— PLATFORM_CFG_RT_OSC_EN: Enable/Disable real-time crystal oscillator. Default: En-
abled.

— PLATFORM_CFG_RT_CLK: Real-time clock selection. Flag is platform_rt_clk_src_t.
Default: PLATFORM_RT_RC

typedef enum

{
PLATFORM_RT_OSC, // External real-time crystal oscillator

PLATFORM_RT_RC // Internal real-time RC clock
} platform_rt_clk_src_t;

For ING918, When modifying this configuration, both RT_RC and RT_OSC should be
enabled and run:

* For RT_OSC, wait until status of RT_OSC s OK;
* For RT_RC, wait 100us after enabled.
And wait another 100ps before disabling the unused clock.
— PLATFORM_CFG_RT_CLK_AcC: Configure real-time clock accuracy in ppm.

— PLATFORM_CFG_RT_CALI_PERIOD: Real-time clock auto-calibration period in seconds.
Default: 3600 * 2 (2 hours).

— PLATFORM_CFG_DEEP_SLEEP_TIME_REDUCTION: Sleep time reduction (deep sleep mode)
in micro seconds. ING918 Default: ~550ps.

— PLATFORM_CFG_SLEEP_TIME_REDUCTION: Sleep time reduction (other sleep mode) in mi-
cro seconds. ING918 Default: ~450ps.

— PLATFORM_CFG_LL_DBG_FLAGS: Link layer flags. Combination of bits in 11_cfg_flag_t.
Check out Programmers’ Guide on Bluetooth Low Energy' for details.

— PLATFORM_CFG_LL_LEGACY_ADV_INTERVAL: Link layer legacy advertising intervals for
high duty cycle (higher 16bits) and normal duty cycle (lower 16bits) in micro seconds.
Default for high duty cycle: 1250; default for normal duty cycle: 1500.

!https://ingchips.github.io/application-notes/pg_ble_stack_cn/index.html

52

https://ingchips.github.io/application-notes/pg_ble_stack_cn/index.html

P NGCHIPS 5.1. CONFIGURATION & INFORMATION

— PLATFORM_CFG_RTOS_ENH_TICK: Enable enhanced ticks for RTOS. Default: Disabled.
When enabled, ticks becomes more accurate when peripherals are generating interrupt
requests frequently.

— PLATFORM_CFG_LL_DELAY_COMPENSATION: Delay compensation for Link Layer.

When system runs at a lower frequency, more time (in ps) is needed by Link Layer to
schedule RF tasks. For example, if ING916 runs at 24MHz, a compensation of ~2500
ps is needed.

— PLATFORM_CFG_24M_0SC_TUNE: 24M OSC tunning. Not available for ING918.
For ING916, tunning value may vary in 0x16~0x2d.

— PLATFORM_CFG_ALWAYS_CALL_WAKEUP: Always trigger PLATFORM_CB_EVT_ON_DEEP_SLEEP_WAKEUP
event no matter if deep sleep procedure is completed or aborted (failed). Default for
ING918: Disabled for backward compatibility. Default for ING916: Enabled.

— PLATFORM_CFG_FAST_DEEP_SLEEP_TIME_REDUCTION: Sleep time reduction for fast deep
sleep mode in micro seconds. Not available for ING918.

This configuration must be less or equal to PLATFORM_CFG_DEEP_SLEEP_TIME_REDUCTION.
When equal to PLATFORM_CFG_DEEP_SLEEP_TIME_REDUCTION, fast deep sleep mode is
not used.

Default for ING916: ~2000ys.

— PLATFORM_CFG_AUTO_REDUCE_CLOCK_FREQ: Automatically reduce CPU clock frequency
in these circumstances:

s The default IDLE procedure,
s« When entering sleep modes.

Not available for ING918. Default for ING916: Enabled.

* const uint32_t flag

To disable or enable an item. It can be one of following values:

— PLATFORM_CFG_ENABLE
— PLATFORM_CFG_DISABLE

5.1.1.3 Return Value

Void.

5.1.1.4 Remarks

Void.

53

5.1. CONFIGURATION & INFORMATION ’ INGCHIPS

5.1.1.5 Example

// On ING918, Enable HCI logging
platform_config(PLATFORM_CFG_LOG_HCI, PLATFORM_CFG_ENABLE) 3

5.1.2 platform_get_version

Get version number of platform.

5.1.2.1 Prototype

const platform_ver_t *platform_get_version(void)s

5.1.2.2 Parameters

Void.

5.1.2.3 Return Value

Pointer to platform_ver_t.

5.1.2.4 Remarks

Platform version number has three parts, major, minor and patch:

typedef struct platform_ver
{
unsigned short majors;
char minor;
char patch;
} platform_ver_t;

5.1.2.5 Example

54

P NGCHIPS 5.1. CONFIGURATION & INFORMATION

const platform_ver_t *ver = platform_get_version()}
printf("Platform version: %d.%d.%d\n", ver->major, ver->minor, ver->patch);

5.1.3 platform_read_info

Read platform information.

5.1.3.1 Prototype

uint32_t platform_read_info(const platform_info_item_t ditem);

5.1.3.2 Parameters

* const platform_info_item_t item

Information item.

— PLATFORM_INFO_RT_OSC_STATUS: Read status of real-time crystal oscillator. Value 0:
not OK; Non-0: OK.

For ING916: this clock become running after selected as real time clock source.

— PLATFORM_INFO_RT_CLK_CALI_VALUE: Read current real time clock calibration result.

— PLATFOFM_INFO_IRQ_NUMBER: Get the underline IRQ number of a platform IRQ.
For example, get the underline IRQ number of UARTO:

platform_read_info(
PLATFOFM_INFO_IRQ_NUMBER + PLATFORM_CB_IRQ_UARTO)

5.1.3.3 Return Value

Value of the information item.

5.1.3.4 Remarks
Void.

55

5.2. EVENTS & INTERRUPTS

P NGCHIPS

5.1.3.5 Example

platform_read_info(PLATFORM_INFO_RT_OSC_STATUS)

5.1.4 platform_switch_app

Switch to a secondary app.

5.1.4.1 Prototype

void platform_switch_app(const uint32_t app_addr);

5.1.4.2 Parameters

* const uint32_t app_addr
Entry address of the secondary app.

5.1.4.3 Return Value

Void.

5.1.4.4 Remarks

When calling this function, the code after it will not be executed.

5.1.4.5 Example

platform_switch_app(0x80000);

5.2 Events & Interrupts

5.2.1 platform_set_evt_callback_table

Register a callback function table for all platform events.

56

’INEEHIPE 5.2. EVENTS & INTERRUPTS

5.2.1.1 Prototype

void platform_set_evt_callback_table(
const platform_evt_cb_table_t *table);

5.2.1.2 Parameters
* const platform_evt_cb_table_t xtable
Address of the callback function table.
5.2.1.3 Return Value

Void.

5.2.1.4 Remarks

This function shall only be called in app_main. If platform_set_evt_callback is used, this func-
tion shall not be used.

Comparing to platform_set_evt_callback, use this function can save a block of RAM of
sizeof(platform_evt_cb_table_t) bytes.

5.2.1.5 Example

static const platform_evt_cb_table_t evt_cb_table =

{
.callbacks = {
[PLATFORM_CB_EVT_HARD_FAULT] = {
.f = (f_platform_evt_cb)cb_hard_fault,
}s
[PLATFORM_CB_EVT_PROFILE_INIT] = {
.f = setup_profile,
}s
// ...
}
}s

int app_main()

57

5.2. EVENTS & INTERRUPTS ’ INGCHIPS

{
/Y ooc
platform_set_evt_callback_table(&evt_cb_table);
// ...

}

5.2.2 platform_set_+irq_callback_table

Register a callback function table for all platform interrupt requests.

5.2.2.1 Prototype

void platform_set_irq_callback_table(
const platform_irq_cb_table_t *table);

5.2.2.2 Parameters

* const platform_irq_cb_table_t *table
Address of the callback function table.

5.2.2.3 Return Value

Void.

5.2.2.4 Remarks

This function shall only be called in app_main. If platform_set_irq_callback is used, this func-
tion shall not be used.

Comparing to platform_set_irq_callback, use this function can save a block of RAM of
sizeof(platform_irq_cb_table_t) byTe&

5.2.2.5 Example

58

’INEEHIPE 5.2. EVENTS & INTERRUPTS

static const platform_irq_cb_table_t dirq_cb_table =

{
.callbacks = {
[PLATFORM_CB_IRQ_UARTO] = {
.f = (f_platform_irq_cb)cb_irq_uart,
.user_data = APB_UARTO
}s
// ...
}
13

int app_main()

{
// ...
platform_set_irq_callback_table(&irqg_cb_table);
// ...

}

5.2.3 platform_set_evt_callback

Registers callback functions to platform events.

5.2.3.1 Prototype

void platform_set_evt_callback(platform_evt_callback_type_t type,
f_platform_evt_cb f,
void *user_data);

5.2.3.2 Parameters

* platform_evt_callback_type_t type

Specify the event type to which the callback function is registered. It can be one of following
values:

— PLATFORM_CB_EVT_PUTC: Ouput ASCII character event

When platform want to output ASCII characters for logging, this event is fired. Param-
eter void xdata passed into the callback function is casted from char x.

Wizard can automatically generate code that redirects platform log to UART if Print
to UART is checked on Common Function when creating a new project.

59

5.2. EVENTS & INTERRUPTS ’INEEHIPE

— PLATFORM_CB_EVT_PROFILE_INIT: Profile initialization event
When host initializes, this event is fired to request app to initialize GATT profile.
Wizard can automatically generate code for this event when creating a new project.

— PLATFORM_CB_EVT_ON_DEEP_SLEEP_WAKEUP: Wakeup from deep sleep event

When waking up from deep sleep, this event is fired. During deep sleep, peripheral
interfaces (such as UART, 12C, etc) are all powered off. So, when waking up, these
interfaces might need to be re-initialized.

Wizard can automatically generate code for event if Deep Sleep is checked on Common
Function when creating a new project.
Parameter void *data passed into the callback function is casted from platform_wakeup_call_info_t

*-

RTOS is not resumed yet, some ROTS APIs are not usable; Some platform APIs (such
as platform_get_us_time) might be unusable either.

— PLATFORM_CB_EVT_ON_IDLE_TASK_RESUMED: OS is fully resumed from power saving
modes.

The callback is invoked after PLATFORM_CB_EVT_ON_DEEP_SLEEP_WAKEUP if its
reason is PLATFORM_WAKEUP_REASON_NORMAL. For NoOS variants, the callback is
invoked by platform_os_idle_resumed_hook(). This event is different with
PLATFORM_CB_EVT_ON_DEEP_SLEEP_WAKEUP:

% all OS functionalities are resumed (For NoOS variants, this depends on the proper
use of platform_os_idle_resumed_hook())

* all platform APIs are functional

* callback is invoked in the idle task.

Parameter void *data is always NULL.

— PLATFORM_CB_EVT_QUERY_DEEP_SLEEP_ALLOWED: Query if deep sleep is allowed event

When platform prepares to enter deep sleep mode, this event is fired to query app if deep
sleep is allow at this moment. Callback function can reject deep sleep by returning o,
and allow it by returning a non-e value.

Wizard can automatically generate code for event if Deep Sleep is checked on Common
Function when creating a new project.

— PLATFORM_CB_EVT_HARD_FAULT: Hard fault occurs
When hard fault occurs, this event is fired. Parameter void *data passed into the call-
back function is casted from hard_fault_info_t =*. If this callback is not defined, CPU
enters a dead loop when hard fault occurs.

— PLATFORM_CB_EVT_ASSERTION: Software assertion fails

When software assertion fails, this event is fired. Parameter void *data passed into the
callback function is casted from assertion_info_t *. If this callback is not defined,
CPU enters a dead loop when assertion occurs.

— PLATFORM_CB_EVT_LLE_INIT: Link layer engine initialized.
When link layer engine initialized, this event is fired.

60

'INEEHIPE 5.2. EVENTS & INTERRUPTS

— PLATFORM_CB_EVT_HEAP_0OM: Out of memory.
When allocation on heap fails (heap out of memory), this event is fired. If this event is
fired and no callback is defined, CPU enters a dead loop.

— PLATFORM_CB_EVT_TRACE: Trace output.

When a trace item is emitted, this event is fired. Apps can define a callback func-
tion for this event to save or log trace output. param to the callback is casted from
platform_trace_evt_t * (See Debugging & Tracing).

typedef struct
{

const void xdatalj;
const void *data2s
uintle_t lenl;
uintle_t len2;

} platform_evt_trace_t;

A trace item is a combination of datal and data2. Note:

1. 1lenl or len2 might be 0, but not both;
2. If callback function finds that it can’t output data of size len1 + len2, then, both
datal & data2 should be discarded to avoid trace item corruption.
— PLATFORM_CB_EVT_EXCEPTION: Hardware exceptions.
Parameter void *data is casted from platform_exception_id_t =.

— PLATFORM_CB_EVT_IDLE_PROC: Customized IDLE procedure.

See “Programmer’s Guide - Power Saving”>.

— PLATFORM_CB_EVT_HCI_RECV: Take over HCI and isolate the built-in Host completely.
When defined:

s HCI events and ACL data are passed to this callback;
s PLATFORM_CB_EVT_PROFILE_INIT is ignored.

Parameter void *data is casted from const platform_hci_recv_t *. See also
platform_get_link_layer_interf.
— PLATFORM_CB_EVT_BEFORE_DEEP_SLEEP: Platform is entering deep sleep mode

When platform decides to enter deep sleep mode, this event is emitted. Apps can take
this opportunity to configure peripherals. The callback function shall be simple and
return as soon as possible.

Parameter void *data is casted from platform_sleep_category_b_t, representing the
selected sleep mode.

e f_platform_evt_cb f

The callback function registered to event type. f_platform_evt_cb is:

Zhttps://ingchips.github.io/application-notes/pg_power_saving_en/

61

https://ingchips.github.io/application-notes/pg_power_saving_en/

5.2. EVENTS & INTERRUPTS ’INEEHIPE

typedef uint32_t (*f_platform_evt_cb)(void *data, void *user_data);

Returned value is ignored except explicitly stated.

* void *user_data

This is passed to callback function’s user_data unchanged.

5.2.3.3 Return Value

Void.

5.2.3.4 Remarks

It is not required to register callback functions to each event.

If no callback function is registered to PLATFORM_CB_EVT_PUTC event, all platform log including
platform_printf is discarded.

If no callback function is registered to PLATFORM_CB_EVT_PROFILE_INIT event, BLE device’s
profile is empty.

If no callback function is registered to PLATFORM_CB_EVT_ON_DEEP_SLEEP_WAKEUP event, app
will not be notified when waking up from deep sleep.

If no callback function is registered to PLATFORM_CB_EVT_QUERY_DEEP_SLEEP_ALLOWED event,
deep sleep is disabled.

5.2.3.5 Example

uint32_t cb_putc(char *c, void *dummy)
{
// TODO: output char c to UART
return 03

platform_set_evt_callback(PLATFORM_CB_EVT_PUTC, (f_platform_evt_cb)cb_putc,
NULL) 3

62

'INEEHIPE 5.2. EVENTS & INTERRUPTS

5.2.4 platform_set_irq_callback

Registers callback functions to interrupt requests.

Developers do not need to define IRQ handlers in apps, but use callback functions instead.

5.2.4.1 Prototype

void platform_set_dirq_callback(platform_irqg_callback_type_t type,
f_platform_irq_cb f,
void *user_data);

5.2.4.2 Parameters

* platform_irq_callback_type_t type

Specify the IRQ type to which the callback function is registered. Values vary for different
chip families. Take ING918 as an example:

PLATFORM_CB_IRQ_RTC,
PLATFORM_CB_IRQ_TIMERO,
PLATFORM_CB_IRQ_TIMER1,
PLATFORM_CB_IRQ_TIMER2,
PLATFORM_CB_IRQ_GPIO,
PLATFORM_CB_IRQ_SPIO,
PLATFORM_CB_IRQ_SPI1,
PLATFORM_CB_IRQ_UARTO,
PLATFORM_CB_IRQ_UART1,
PLATFORM_CB_IRQ_I2CO,
PLATFORM_CB_IRQ_I2C1

e f_platform_irq_cb f

The callback function registered to IRQ type. f_platform_irqg_cb is:

typedef uint32_t (*f_platform_irqg_cb) (void *user_data)s

* void *user_data

This is passed to callback function’s user_data unchanged.

63

5.2. EVENTS & INTERRUPTS ’INEEHIPE

5.2.4.3 Return Value

Void.

5.2.4.4 Remarks

When a callback function is registered to an IRQ, the IRQ is enabled automatically. See also
platform_enable_dirq.

5.2.4.5 Example

uint32_t cb_irq_uart@(void *dummy)

{
// TODO: add UARTO IRQ handling code
return 03

platform_set_irqg_callback(
PLATFORM_CB_IRQ_UARTO,
cb_irq_uarto,
NULL) 3

5.2.5 platform_enable_irq

Enable or disable a specified IRQ.

5.2.5.1 Prototype

void platform_enable_irq(
platform_irqg_callback_type_t type,
uint8_t flag);

64

'INEEHIPE 5.3. CLOCKS

5.2.5.2 Parameters

* platform_irqg_callback_type_t type:
The IRQ to be configured.

* uint8_t flag:
Enable (1) or disable (0).

5.2.5.3 Return Value

Void.

5.2.5.4 Remarks

“Enabling” or “disabling” an interrupt here is from the perspective of CPU. Take UART as an
example, UART itself has to be configured to generate interrupts for Rx, Tx, or timeout, which is
out of the scope of this function.

5.2.5.5 Example

To enable the interrupt request from UARTO:

platform_enable_irq(
PLATFORM_CB_IRQ_UARTO,
1);

5.3 Clocks

See also “The Real-time Clock”® in “Programmer’s Guide - Power Saving”*.

5.3.1 platform_calibrate_rt_clk

Calibrate real-time clock and get the calibration value.

3https://ingchips.github.io/application-notes/pg_power_saving_en/ch-api.html#the-real-time-clock
“https://ingchips.github.io/application-notes/pg_power_saving_en/

65

https://ingchips.github.io/application-notes/pg_power_saving_en/ch-api.html#the-real-time-clock
https://ingchips.github.io/application-notes/pg_power_saving_en/

5.3. CLOCKS ’lNEEHIPE

5.3.1.1 Prototype

uint32_t platform_calibrate_rt_clk(void);

5.3.2 platform_rt_rc_auto_tune

Automatically tune the internal real-time RC clock, and get the tuning value.

For ING918, this function tunes the internal real-time RC clock to 50kHz>. For others, it tunes
the internal real-time RC clock to 32768Hz.

5.3.2.1 Prototype

uintle_t platform_rt_rc_auto_tune(void);

5.3.2.2 Parameters

Void.

5.3.2.3 Return Value

The 16-bits tuning value.

5.3.2.4 Remarks

This function must be called if the app enables power saving mode, and the real-time RC clock is
used as the clock source.

This operation costs ~250ms. It is recommended to call this once and store the returned value
for later usage.

5.3.2.5 Example

SStarting from v8.4.6. For elder version, 32768Hz is used.

66

’INEEHIPE 5.3. CLOCKS

// the simplest example: call this function in the

// callback function of ‘PLATFORM_CB_EVT_PROFILE_INIT'
// without saving the returned value.

uint32_t setup_profile(void *user_data)

{
platform_rt_rc_auto_tune()3

5.3.3 platform_rt_rc_auto_tune2

Automatically tune the internal real-time RC clock to a specific frequency, and get the tuning value.

5.3.3.1 Prototype

uintle_t platform_rt_rc_auto_tune2(
uint32_t target_frequency)

5.3.3.2 Parameters

* uint32_t target_frequency

Target frequency in Hertz.

5.3.3.3 Return Value

The 16-bits tuning value.

5.3.4 platform_rt_rc_tune

Tune internal the real-time RC clock with the tune value.

5.3.4.1 Prototype

void platform_rt_rc_tune(uintl6_t value);

67

. P NGCHIPS

5.3.4.2 Parameters

* uintl6e_t value

Value used to tune the clock (returned by platform_rt_rc_auto_tune, orplatform_rt_rc_auto_tune2)

5.3.4.3 Return Value

Void.

5.3.4.4 Remarks

void.

5.3.4.5 Example

platform_rt_rc_tune(value);

5.4 RF

5.4.1 platform_set_rf_clk_source

Select RF clock source. This function is for internal use.

5.4.2 platform_set_rf_init_data

Customize RF initialization data. This function is for internal use.

5.4.3 platform_set_rf_power_mapping

Power level is represented by an index internally. There is a power mapping table which lists the
actual Tx power level of an index. Take ING918 as an example, power index is in a range of [0..63],
and power mapping table is an array of 64 entries, each entry giving the Tx power level in 0.01 dBm.

For applications that need better power level control, actual power level can be measured for
each index. Update the mapping with this function, then the stack can determine the proper index
for a request power level.

68

P INGCHIPS .

5.4.3.1 Prototype

void platform_set_rf_power_mapping(
const intl6_t *rf_power_mapping);

5.4.3.2 Parameters

* const intl6_t *rf_power_mapping

The new power mapping table.

5.4.3.3 Return Value

Void.

5.4.3.4 Remarks

Void.

5.4.3.5 Example

static const intl6_t power_mapping[] =

{
-6337, // index 0: -63.37dBm
// ...
603 // index 63: 6.03dBm
}s

platform_set_rf_power_mapping(
power_mapping) s

5.4.4 platform_patch_rf_init_data
Patch part of the internal RF initialization data. This function is for internal use.

69

5.5. MEMORY & RTOS ’ INGCHIPS

5.5 Memory & RTOS

5.5.1 platform_call_on_stack

Call a function on a separate dedicated stack. This is useful when a function that uses a lot of stack
needs to be called, occasionally.

5.5.1.1 Prototype

void platform_call_on_stack(
f_platform_function f,
void *user_data,
void *stack_start,
uint32_t stack_size)s

5.5.1.2 Parameters

e f_platform_function f

The function to be called.

* void *user_data

User data to be passed to f.

* void *stack_start

Start (lowest) address of the dedicated stack.

* uint32_t stack_size

Size of the dedicated stack in bytes.

5.5.1.3 Return Value

Void.

5.5.1.4 Remarks

Although stack_size is provided, this function does not protect the stack from overwritten by f.

5.5.2 platform_get_current_task

Get the current task from which this API is called.

70

’ INGCHIFS 5.5. MEMORY & RTOS

5.5.2.1 Prototype

platform_task_id_t platform_get_current_task(void)s

5.5.2.2 Parameters

Void.

5.5.2.3 Return Value

typedef enum

{
PLATFORM_TASK_CONTROLLER,
PLATFORM_TASK_HOST,
PLATFORM_TASK_RTOS_TIMER,
} platform_task_id_t;

5.5.2.4 Remarks

This API is only available in bundles with built-in RTOS.

5.5.3 platform_get_gen_os_driver

Get the generic OS driver. For “NoOS” variants, driver provided by app is returned; for bundles
with built-in RTOS, an emulated driver is returned.

5.5.3.1 Prototype

const void *platform_get_gen_os_driver(void)s

5.5.3.2 Parameters
Void.

71

5.5. MEMORY & RTOS ’ INGCHIPS

5.5.3.3 Return Value

Return value is casted from const gen_os_driver_t *. Developers can cast the return value back
to const gen_os_driver_t * and use API in it.

5.5.3.4 Remarks

gen_os_driver_t is an abstract layer over RTOS. Using API in it instead of RTOS API can make
apps cross RTOS (independent of underlying RTOS).

5.5.4 platform_get_heap_status

Get current status of built-in RTOS’s heap, such as available size, etc.

5.5.4.1 Prototype

void platform_get_heap_status(platform_heap_status_t *status);

5.5.4.2 Parameters
* platform_heap_status_t *status
Heap status.
5.5.4.3 Return Value

Void.

5.5.4.4 Remarks

Heap status is defined as:

typedef struct

{

uint32_t bytes_free; // total free bytes

uint32_t bytes_minimum_ever_free; // minimum of bytes_free from startup
} platform_heap_status_t3

72

’INEEHIPE 5.5. MEMORY & RTOS

5.5.4.5 Example

platform_heap_status_t status;
platform_get_heap_status(&status);

5.5.5 platform_get_rtos_heap_mem

Get memory block used as heap by built-in RTOS.

5.5.5.1 Prototype

void *platform_get_rtos_heap_mem(int *size);

5.5.5.2 Parameters

* int *size

Memory block size in byte.

5.5.5.3 Return Value

Address of memory block.

5.5.5.4 Remarks

When replacing built-in RTOS with a customized one, this memory block is not used at all. Devel-
opers can use this API to get its address and size, and utilize it.

5.5.5.5 Example

// initialize this memory block as heap for RT-Thread
int size = 03

char *heap = platform_get_rtos_heap_mem(&size)3
rt_system_heap_init(heap, heap + size);

73

5.5. MEMORY & RTOS ’ INGCHIPS

5.5.6 platform_get_task_handle

Get RTOS handle of a specific platform task.

5.5.6.1 Prototype

uintptr_t platform_get_task_handle(
platform_task_id_t id);

5.5.6.2 Parameters

* platform_task_id_t 1id
Platform task ID.

5.5.6.3 Return Value

Task handle if such task is known to platform else 0. For example, in the case of “NoOS” variants,
platform does not know the handle of PLATFORM_TASK_RTOS_TIMER, so 0 is returned.

5.5.7 platform_install_task_stack

Install a new RTOS stack for a specific platform task.

Use this to enlarge stack when the default stack size is not enough for internal tasks. For
example, user developed RTOS timer callbacks might require a larger stack space.

Developers can check RTOS documentation for how to check stack usages. For example,
uxTaskGetStackHighWaterMark in FreeRTOS is used to query how close a task has come to over-
flowing the stack space allocated to it.

5.5.7.1 Prototype

void platform_install_task_stack(
platform_task_id_t -d,
void *start,
uint32_t size)s

74

'INEEHIPE 5.5. MEMORY & RTOS

5.5.7.2 Parameters

* platform_task_id_t 1id

Task identifier.

* void *start

Start (lowest) address of the stack. Address shall be properly aligned for underlying CPU.

* uint32_t size

Size of the new stack in bytes.

5.5.7.3 Return Value

Void.

5.5.7.4 Remarks

This function shall only be called in app_main.

For NoOS variants, RTOS stacks can be replaced (modify its size, etc) when implementing the
generic OS interface.

5.5.8 platform_install_isr_stack

Install a new stack for ISR.

5.5.8.1 Prototype

void platform_install_isr_stack(void *top);

5.5.8.2 Parameters
* void *top
Top of the new stack, which must be properly aligned for the underlying CPU.
5.5.8.3 Return Value
Void.

75

5.6. TIME & TIMERS ’ INGCHIPS

5.5.8.4 Remarks

In case apps need a much larger stack than the default one in ISR, a new stack can be installed to
replace the default one.

This function is only allowed to be called in app_main. The new stack is put into use after
app_main returns.

5.5.8.5 Example

uint32_t new_stack[2048];

platform_install_isr_stack(new_stack + sizeof(new_stack) / sizeof(new_stack[0]));

5.6 Time & Timers
API for reading current time (timer counter):

* platform_get_timer_counter
* platform_get_us_time

API for using timers with 625ps resolution:

* platform_set_abs_timer
* platform_set_timer
* platform_delete_timer

API for using timer with 1ps resolution:

* platform_create_us_timer
* platform_cancel_us_timer

Both types of timers can be used with power saving, i.e. it just works as expected when power
saving is enabled. A comparison of of these two types of timers is shown in Table 5.1.

Table 5.1: Two Types of Platform Timers

Type 625ps resolution 1ps resolution

Callback Invoked from a task-like context Invoked from an ISR

76

’INEEHIPE 5.6. TIME & TIMERS

Type 625ps resolution 1ps resolution

Identifier Callback function pointer Timer handle

5.6.1 platform_cancel_us_timer

Cancel a platform timer previously created by platform_create_us_timer.

5.6.1.1 Prototype

int platform_cancel_us_timer(
platform_us_timer_handle_t timer_handle);

5.6.1.2 Parameters
* platform_us_timer_handle_t timer_handle
Handle of the timer.
5.6.1.3 Return Value

This function returns 0 if the specified time is canceled successfully. Otherwise, a non-0 value is
returned, which also means the callback function of the timer is executing.

5.6.2 platform_create_us_timer

Setup a single-shot platform timer with 1 microsecond (ps) resolution.

5.6.2.1 Prototype

platform_us_timer_handle_t platform_create_us_timer(
uint64_t abs_time,
f_platform_us_timer_callback callback,
void *param);

77

5.6. TIME & TIMERS ’ INGCHIPS

5.6.2.2 Parameters

* uint64_t abs_time

When platform_get_us_timer() == abs_time, the callback is invoked.

e f_platform_us_timer_callback callback

The callback function. The signature is:

typedef void * (* f_platform_us_timer_callback) (
platform_us_timer_handle_t timer_handle,
uinte4_t time_us,
void *param) ;

Where, timer_handle is the returned value of platform_create_us_timer, i.e., time_us is
current value of platform_get_us_timer when invoking the callback, and param is the user
parameter when creating this timer.

* void *param
User parameter.
5.6.2.3 Return Value

This function returns a handle of the created timer. A non-NULL value is returned when the timer
is successfully created. Otherwise, NULL is returned.

5.6.2.4 Remarks

Although abs_time is in microsecond (ps), callback is net guaranteed to be invoked with such
resolution.

This type of timers are much like platform_set_timer, except that:

1. resolution is higher;
2. callback is invoked in the context of an ISR or the the caller.

Pseudo code:

create_us_timer(..)

{
if (time passed) return NULL}
if (out of memory) return NULL;

78

’INEEHIPE 5.6. TIME & TIMERS

r = allocate a handle;
if (timer s too near) {
// callback is invoked immediately in the context of the caller
callback(param)s
free memory;
return r; // a non-NULL value is returned

}
save r into a queues // callback will be invoked in an ISR later
return rj

DO NOT call platform_create_us_timer again in callback.

5.6.3 platform_delete_timer

Delete a previously platform timer created by platform_set_timer or platform_set_abs_timer.

5.6.3.1 Prototype

void platform_delete_timer(f_platform_timer_callback callback)

5.6.3.2 Parameters
e f_platform_timer_callback callback
The callback function, which is also an identifier for the timer.
5.6.3.3 Return Value

Void.

5.6.3.4 Remarks

When calling this function, the callback might already be queued for invoking in the task. Therefore,
the callback might still be invoked after this function is called.

5.6.4 platform_get_timer_counter

Read the counter of platform timer at 625ps resolution.

79

5.6. TIME & TIMERS ’ INGCHIPS

5.6.4.1 Prototype

uint32_t platform_get_timer_counter(void);

5.6.4.2 Parameters

Void.

5.6.4.3 Return Value

A full 32 bits value represents current counter, which is roughly platform_get_us_time() / 625.

5.6.5 platform_get_us_time

Read the internal time counting from BLE initialization.

5.6.5.1 Prototype

int64_t platform_get_us_time(void);

5.6.5.2 Parameters

Void.

5.6.5.3 Return Value

Value of the internal time counter counting at 1ps. This counter wraps around every ~21.8 years.

5.6.5.4 Remarks

This counter restarts after shutdown.

5.6.5.5 Example

80

'INEEHIPE 5.6. TIME & TIMERS

uint64_t now = platform_get_us_time();

5.6.6 platform_set_abs_timer

Setup a single-shot platform timer triggered at an absolute time with 625pus resolution.

5.6.6.1 Prototype

void platform_set_abs_timer(
f_platform_timer_callback callback,
uint32_t abs_time);

5.6.6.2 Parameters

e f_platform_timer_callback callback

The callback function when the timer expired, and is called in a RTOS task-like® context, but
not an ISR.

* uint32_t abs_time

when platform_get_timer_counter() == abs_time, callback is invoked. If abs_time
just passes platform_get_timer_counter(), callback is invoked immediately, for exam-
[ﬂe,abs_timeisplatform_get_timer_counter() - 1.

5.6.6.3 Return Value

Void.

5.6.6.4 Remarks

This function always succeeds, except when running out of memory.

®It’s called from the Controller task if existing.

81

5.6. TIME & TIMERS ’ INGCHIPS

5.6.6.5 Example

Use this function to emulate a periodic timer.

#define PERIOD 100
static uint32_t last_timer = 0;

void platform_timer_callback(void)

{
last_timer += PERIOD;
platform_set_abs_timer(platform_timer_callback, last_timer);
// do periodic job
/) ...

}

last_timer = platform_get_timer_counter() + PERIOD;
platform_set_abs_timer(platform_timer_callback, last_timer);

5.6.7 platform_set_timer

Setup a single-shot platform timer after a delay from “now” with 625ps resolution.

5.6.7.1 Prototype

void platform_set_timer (
f_platform_timer_callback callback,
uint32_t delay)s

5.6.7.2 Parameters

e f_platform_timer_callback callback
The callback function when the timer expired, and is called in a RTOS task-like context, but
not an ISR.
* uint32_t delay
Time delay before the timer expires (unit: 625ps).
Valid Range: 0~0x7fffffff. When delay is 0, the timer is cleared.

82

’INEEHIPE 5.7. POWER SAVING

5.6.7.3 Return Value

Void.

5.6.7.4 Remarks

This function always succeeds, except when running out of memory.

platform_set_timer (f, 100) is equivalent to:

platform_set_abs_timer(f,
platform_get_timer_counter() + 100);

platform_set_timer (f, 0) is equivalent to:
platform_delete_timer(f);
but not

platform_set_abs_timer(f,
platform_get_timer_counter() + 0)3

Since callback is also the identifier of the timer, below two lines defines only a timer expiring
after 200 units but not two separate timers:

platform_set_timer(f, 100)3
platform_set_timer(f, 200)3 // update the timer, but not creating a new one

If f is used once again in platform_set_abs_timer, then the timer is updated again:

platform_set_abs_timer(f, ...);

5.7 Power Saving

This section provides APIs for implementing power saving in RTOS. See “Programmer’s Guide -
Power Saving”’ for more information.

"https://ingchips.github.io/application-notes/pg_power_saving_en/

83

https://ingchips.github.io/application-notes/pg_power_saving_en/

5.7. POWER SAVING ’|N5EH|PE

5.7.1 platform_pre_suppress_cycles_and_sleep_processing

Prepare to suppress some cycles for tick-less power saving.

5.7.1.1 Prototype

uint32_t platform_pre_suppress_cycles_and_sleep_processing(
uint32_t expected_cycles);

5.7.1.2 Parameters

* uint32_t expected_cycles
Excepted cycles that can be suppressed (skipped safely in power saving modes).

Full range of uint32_t is supported.

5.7.1.3 Return Value

Adjusted cycles that can be suppressed.

5.7.2 platform_pre_sleep_processing

Preprocessing for tick-less sleep.

5.7.2.1 Prototype

void platform_pre_sleep_processing(void)s

5.7.2.2 Parameters

Void.

5.7.2.3 Return Value
Void.

84

'INEEHIPE 5.7. POWER SAVING

5.7.3 platform_post_sleep_processing

Postprocessing for tick-less sleep.

5.7.3.1 Prototype

void platform_post_sleep_processing(void);

5.7.3.2 Parameters

Void.

5.7.3.3 Return Value

Void.

5.7.3.4 Remarks

If platform_pre_sleep_processingis called, it must be followed by platform_post_sleep_processing.

5.7.4 platform_os_idle_resumed_hook

Hook for Idle task got resumed. Call this when Idle task is resumed.

5.7.4.1 Prototype

void platform_os_idle_resumed_hook(void);

5.7.4.2 Parameters

Void.

5.7.4.3 Return Value
Void.

85

5.8. UTILITIES ’lNEEHIPE

5.7.5 platform_pre_suppress_ticks_and_sleep_processing

Pre-suppress ticks and sleep processing. This API is obsoleted. Use platform_pre_suppress_cycles_and_sleep_pr
instead.

5.8 Utilities

5.8.1 platform_hrng

Generate random bytes by using hardware random-number generator.

5.8.1.1 Prototype

void platform_hrng(uint8_t *bytes, const uint32_t len);

5.8.1.2 Parameters

* uint8_t *bytes

Random data output.

* const uint32_t len

Number of random bytes to be generated.

5.8.1.3 Return Value

Void.

5.8.1.4 Remarks

Time consumption to generate a fix length of data is undetermined.

5.8.1.5 Example

uint32_t strong_randoms;
platform_hrng(&strong_random, sizeof(strong_random))

86

’ INGCHIRS 5.8. UTILITIES

5.8.2 platform_rand

Generate a pseudo random integer by internal PRNG.

5.8.2.1 Prototype

int platform_rand(void)3

5.8.2.2 Parameters

Void.

5.8.2.3 Return Value

A pseudo random integer in range of 0 to RAND_MAX.

5.8.2.4 Remarks

Seed of the internal PRNG is initialized by HRNG at startup. This function can be used as a re-
placement of rand() in standard library.

5.8.2.5 Example

printf("rand: %d\n'", platform_rand());

5.8.3 platform_read_persistent_reg

Read value from the persistent register. See also platform_write_persistent_reg.

5.8.3.1 Prototype

uint32_t platform_read_persistent_reg(void)s

87

5.8. UTILITIES ’ INGCHIRS

5.8.3.2 Parameters

Void.

5.8.3.3 Return Value

The value written by platform_write_persistent_reg.

5.8.3.4 Remarks

Void.

5.8.3.5 Example

platform_read_persistent_reg();

5.8.4 platform_reset

Reset platform (SoC).

5.8.4.1 Prototype

void platform_reset(void)s

5.8.4.2 Parameters

Void.

5.8.4.3 Return Value

Void.

5.8.4.4 Remarks
When calling this function, the code after it will not be executed.

88

'INEEHIPE 5.8. UTILITIES

5.8.4.5 Example

if (out-of-memory)
platform_reset()3

5.8.5 platform_shutdown

Bring the whole system into shutdown state, and reboot after a specified duration. Optionally, a
portion of memory can be retained during shutdown, and apps can continue to use it after reboot.

Note that this function will NOT return except that shutdown procedure fails to initiate. Pos-
sible causes for failures include:

1. External wake-up signal is issued;
2. Input parameters are not proper;
3. Internal components are busy.

5.8.5.1 Prototype

void platform_shutdown(const uint32_t duration_cycles,
const void *p_retention_data,
const uint32_t data_size);

5.8.5.2 Parameters

* const uint32_t duration_cycles
Duration (measured in cycles of real-time clock) before power on again (reboot). The mini-
mum duration is 825 cycles (about 25.18ms). If o is used, the system will stay in shutdown
state until external wake-up signal is issued.

* const void *p_retention_data
Pointer to the start of data to be retained. Only data within SYSTEM memory can be retained.
This parameter can be set to NULL when data_size is o.

* data_size

Size of the data to be retained. Set to © when memory retention is not needed.

89

5.8. UTILITIES ’ INGCHIPS

5.8.5.3 Return Value

Void.

5.8.5.4 Remarks

Void.

5.8.5.5 Example

// Shutdown the system and reboot after 1s.
platform_shutdown(32768, NULL, 0)3

5.8.6 platform_write_persistent_reg

Write a value to the persistent register. This value is kept even in power saving, shutdown mode,
or when switching to another app.

Only a few bits are saved as shown in Table 5.2.

Table 5.2: Persistent Register Bit Size

Chip Family Register Size (bit)

ING918 4
ING916 5)

5.8.6.1 Prototype

void platform_write_persistent_reg(const uint8_t value);

5.8.6.2 Parameters

* const uint8_t value

The value.

90

P NGCHIPS

5.9. DEBUGGING & TRACING

5.8.6.3 Return Value

Void.

5.8.6.4 Remarks

Void.

5.8.6.5 Example

platform_write_persistent_reg(l);

5.9 Debugging & Tracing

5.9.1 platform_printf

The printf function stored in platform binary.

5.9.1.1 Prototype

void platform_printf(const char *format, ...);

5.9.1.2 Parameters

* const char *xformat

Format string.

Variable arguments for format string.

5.9.1.3 Return Value
Void.

91

5.9. DEBUGGING & TRACING ’ INGCHIPS

5.9.1.4 Remarks

There are pros & cons to use this function.

Pros:
* This function is located in platform binary, app binary size can be saved.
Cons:

» Output is directed PLATFORM_CB_EVT_PUTC event, so its callback function must be defined.

5.9.1.5 Example

platform_printf("Hello world")

5.9.2 platform_raise_assertion

Raise a software assertion.

5.9.2.1 Prototype

void platform_raise_assertion(const char *file_name, int line_no);

5.9.2.2 Parameters

* const char *file_name

File name where the assertion occurred.

* int line_no
Line number where the assertion occurred.
5.9.2.3 Return Value
Void.

92

’ INGCHIRS 5.10. OTHERS

5.9.2.4 Remarks

Void.

5.9.2.5 Example

if (NULL == ptr)

platform_raise_assertion(__FILE LINE__);

== o=

5.9.3 platform_trace_raw

Output a block of raw data to TRACE. ID is PLATFORM_TRACE_ID_RAW.

5.9.3.1 Prototype

void platform_trace_raw(
const void *buffer,
const int byte_len);

5.9.3.2 Parameters

* const void xbuffer

Pointer of the buffer.

* const int byte_len

Length of data buffer in bytes.

5.10 Others

5.10.1 platform_get_link_layer_interf
Get link layer driver API.

93

5.10. OTHERS ’lNEEHIPE

5.10.1.1 Prototype

const platform_hci_link_layer_interf_t *
platform_get_link_layer_interf(void)s

5.10.1.2 Parameters

Void.

5.10.1.3 Return Value

The driver interface platform_hci_link_layer_interf_t =.

5.10.1.4 Remarks

This API exposes the Controller HCI interface. This driver interface is only available when
PLATFORM_CB_EVT_HCI_RECV is defined, in which case, the built in Host is disabled.

5.10.2 sysSetPublicDeviceAddr

Set the public address of device.

The public address of a BLE device is a 48-bit extended unique identifier (EUI-48) created in
accordance with the IEEE 802-2014 standard®.

INGCHIPS 91x DO NOT have public addresses. This function should ONLY be used for
debugging or testing, and NEVER be used in final products.

5.10.2.1 Prototype

void sysSetPublicDeviceAddr(const unsigned char *addr)j

8http://standards.ieee.org/findstds/standard/802-2014.html

94

http://standards.ieee.org/findstds/standard/802-2014.html

’INEEHIPE 5.10. OTHERS

5.10.2.2 Parameters

* const unsigned char *addr

New public address.

5.10.2.3 Return Value

Void.

5.10.2.4 Remarks

In order to avoid potential issues, this function should be called before calling any GAP functions.
It is recommended to call this function in app_ma+in or PLATFORM_CB_EVT_PROFILE_INIT event call-
back function.

5.10.2.5 Example

const unsigned char pub_addr[] = {1,2,3,4,5,6}3
sysSetPublicDeviceAddr (pub_addr)

95

5.10. OTHERS

96

Chapter 6

Revision History

Version Notes Date

1.0 Initial release 2020-07-28
1.1 Add Python downloader 2020-10-10
1.2 Update API descriptions 2020-07-05
1.2.1 Update memory dump section 2020-08-02
1.2.2 Fix typos, other minor updates 2020-09-08
1.2.3 Fix order of versions in “Device With FOTA” and typo 2020-09-09
1.2.4 Fix outdated information in tutorials 2020-10-20
1.2.5 Update for “NoOS” bundles 2020-11-15
1.2.6 Add ING9168xx 2022-01-10
1.2.7 Minor fixes 2022-07-30
1.2.8 Add btstack_push_user_runnable 2022-10-31
1.2.9 Add information about Axf Tool 2023-10-23
1.3.0 Fix some errors 2024-05-28
1.4.0 Update Platform API 2025-01-20
1.5.0 Add AI Shortcuts, update Platform API 2025-04-22

97

98

	Welcome
	1 Introduction
	1.1 Scope
	1.2 Architecture
	1.2.1 RTOS Bundles
	1.2.2 ``NoOS'' Bundles

	1.3 Abbreviations & Terminology
	1.4 References

	2 Tutorials
	2.1 Hello World
	2.1.1 Development Tool Page
	2.1.2 Choose Chip Series Page
	2.1.3 Choose Project Type Page
	2.1.4 Role of Your Device Page
	2.1.5 Peripheral Setup Page
	2.1.6 Security & Privacy Page
	2.1.7 Firmare Over-The-Air Page
	2.1.8 Common Functions Page
	2.1.9 Build your project
	2.1.10 Download

	2.2 iBeacon
	2.2.1 Setup Advertising Data
	2.2.2 Try It

	2.3 Thermometer
	2.3.1 Setup Advertising Data
	2.3.2 Setup GATT Profile
	2.3.3 Write the Code
	2.3.4 Notification

	2.4 Thermometer with FOTA
	2.4.1 Device with FOTA
	2.4.2 Make a New Version
	2.4.3 FOTA Server
	2.4.4 Try It

	2.5 iBeacon Scanner
	2.5.1 Distance Estimation
	2.5.2 Concurrent Advertising & Scanning

	2.6 Notification & Indication
	2.6.1 Inter-task Communication
	2.6.2 Timer

	2.7 Throughput
	2.7.1 Theoretical Peak Throughput
	2.7.2 Test Throughput

	2.8 Dual Role & BLE Gateway
	2.8.1 Use Wizard to create a peripheral app
	2.8.2 Define Thermometer Data
	2.8.3 Scan for Thermometers
	2.8.4 Discover Services
	2.8.5 Data Handling
	2.8.6 Robustness
	2.8.7 Prepare Thermometers
	2.8.8 Test

	2.9 Start from Examples

	3 Core Tools
	3.1 Wizard
	3.2 Downloader
	3.2.1 Introduction
	3.2.2 Scripting & Mass Production
	3.2.3 Flash Read Protection
	3.2.4 Python Version

	3.3 Tracer
	3.4 Axf Tool
	3.5 AI Shortcuts
	3.5.1 Installation
	3.5.2 Usage

	4 Dive Into SDK
	4.1 Memory Management
	4.1.1 Global Variables
	4.1.2 Using Stack
	4.1.3 Using Heap

	4.2 Multitasking
	4.3 Interrupt Management
	4.4 Power Management
	4.5 CMSIS API
	4.6 Debugging & Tracing
	4.6.1 Tips on SEGGER RTT
	4.6.2 Memory Dump

	5 Platform API Reference
	5.1 Configuration & Information
	5.1.1 platform_config
	5.1.2 platform_get_version
	5.1.3 platform_read_info
	5.1.4 platform_switch_app

	5.2 Events & Interrupts
	5.2.1 platform_set_evt_callback_table
	5.2.2 platform_set_irq_callback_table
	5.2.3 platform_set_evt_callback
	5.2.4 platform_set_irq_callback
	5.2.5 platform_enable_irq

	5.3 Clocks
	5.3.1 platform_calibrate_rt_clk
	5.3.2 platform_rt_rc_auto_tune
	5.3.3 platform_rt_rc_auto_tune2
	5.3.4 platform_rt_rc_tune

	5.4 RF
	5.4.1 platform_set_rf_clk_source
	5.4.2 platform_set_rf_init_data
	5.4.3 platform_set_rf_power_mapping
	5.4.4 platform_patch_rf_init_data

	5.5 Memory & RTOS
	5.5.1 platform_call_on_stack
	5.5.2 platform_get_current_task
	5.5.3 platform_get_gen_os_driver
	5.5.4 platform_get_heap_status
	5.5.5 platform_get_rtos_heap_mem
	5.5.6 platform_get_task_handle
	5.5.7 platform_install_task_stack
	5.5.8 platform_install_isr_stack

	5.6 Time & Timers
	5.6.1 platform_cancel_us_timer
	5.6.2 platform_create_us_timer
	5.6.3 platform_delete_timer
	5.6.4 platform_get_timer_counter
	5.6.5 platform_get_us_time
	5.6.6 platform_set_abs_timer
	5.6.7 platform_set_timer

	5.7 Power Saving
	5.7.1 platform_pre_suppress_cycles_and_sleep_processing
	5.7.2 platform_pre_sleep_processing
	5.7.3 platform_post_sleep_processing
	5.7.4 platform_os_idle_resumed_hook
	5.7.5 platform_pre_suppress_ticks_and_sleep_processing

	5.8 Utilities
	5.8.1 platform_hrng
	5.8.2 platform_rand
	5.8.3 platform_read_persistent_reg
	5.8.4 platform_reset
	5.8.5 platform_shutdown
	5.8.6 platform_write_persistent_reg

	5.9 Debugging & Tracing
	5.9.1 platform_printf
	5.9.2 platform_raise_assertion
	5.9.3 platform_trace_raw

	5.10 Others
	5.10.1 platform_get_link_layer_interf
	5.10.2 sysSetPublicDeviceAddr

	6 Revision History

